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A Critical Review of the Intrinsic Nature of
Vortex Induced Vibrations

T. Sarpkaya
Naval Postgraduate School

Abstract

This is a concise and comprehensive review of the progress made during the
past two decades on vortex-induced vibration (VIV) of mostly circular cylindrical
structures subjected to steady uniform flow. The critical elements of the evolution of
the ideas, theoretical insights, experimental methods, and numerical models are traced
systematically; the strengths and weaknesses of the current state of the understanding
of the complex fluid/structure interaction are discussed in some detail. Finally, some
suggestions are made for further research on VIV.

The rest of this paper is organized as follows: in §1, we make some preliminary
remarks about the state of the art. In §2, we introduce the nomenclature. Section 3 is
an introduction to the relevant concepts and fundamental difficulties. In §4, we
describe the added mass, virtual mass and their role in vortex induced oscillations. In
§5, we introduce the governing and influencing parameters in as much detail as
possible. In §6, the linearized equations of the self-excited motion and their
limitations are discussed. In §7, a detailed discussion of the unsteady force
decomposition is presented. In §8, we discuss the limitations of the forced and free
vibrations. In §9, experiments with forced oscillations are presented. In §10, the
wake of the circular cylinder and the vortex-induced vibrations are discussed in the
light of data obtained with free and forced oscillations. In §11, the self-excited
vibrations are presented. In §12, we discuss vortex-induced vibrations at high
Reynolds numbers, including facts, extrapolations and conjectures. In §13, we
discuss the contributions of the numerical simulations. Finally, in §14 we present our
conclusions and recommendations for further research.




1. Preliminary remarks

The highly specialized subject of vortex-induced vibrations (VIV) is part of a
number of disciplines, incorporating fluid mechanics, structural mechanics,
vibrations, computational fluid dynamics (CFD), acoustics, wavelet transforms,
complex demodulation analysis, statistics, and smart materials. They occur in many
engineering situations, such as bridges, stacks, transmission lines, aircraft control
surfaces, offshore structures, thermowells, engines, heat exchangers, marine cables,
towed cables, drilling and production risers in petroleum production, mooring cables,
moored structures, tethered structures, buoyancy and spar hulls, pipelines, cable-
laying, members of jacketed structures, and other hydrodynamic and hydroacoustic
applications. The most recent interest in long cylindrical members in water ensues
from the development of hydrocarbon resources in depths of 1,000 m or more. In
fact, the depths reached during the paSt 55 years increased as h = (1/540)N*°, where h
is the depth and N is the number of years, starting with N =0 in 1949,

It cannot be emphasized strongly enough that the current state of the laboratory
art concerns the interaction of a rigid body (mostly and most importantly for a
circular cylinder) whose degrees of freedom have been reduced from six to often one
(i.e., transverse motion) with a three-dimensional separated flow, dominated by large-
scale vortical structures. A few exceptions in which a second degree of freedom is
allowed (in the in-line direction) will be discussed later. The restrictions imposed on
the physical and numerical experiments are a measure of the complexity of the self-
regulated motion. It is not yet clear as to how the additional degrees of freedom will
change some of the observations, measurements, numerical simulations, and the

contemplated applications in all ranges of Reynolds numbers (subcritical, critical,
transcritical, and supercritical).

Numerous contributions to flow-induced oscillations in general and to vortex-
induced vibrations in particular have collectively defined the objectives of the current
VIV research and have guided the acquisition of design data through physical and
numerical experiments, theoretical analyses, and physical insight. The ultimate
objective is, of course, the understanding, prediction, and prevention of vortex
induced vibrations (preferably, without drag penalty) partly through the direct
numerical simulations (DNS with spectral methods) of fundamental as well as




industrially significant fluid-structure interactions, by obtaining as many Navier-
Stokes (N-S) data points as possible (in the desired range of the controlling
parameters) and, partly, through the use of Reynolds-Averaged Navier-Stokes
equations (RANS), Large Eddy Simulations (LES) (with improved sub-grid scale
models), Vortex Element Methods (VEM), and their various combinations. As most
aptly noted by Fischer and Patera (1994): "Fluid dynamics is, of course, not simply
the solution of the Navier-Stokes equations for a particular configuration. Most
broader problem statements, applied or fundamental, involve a vector of physical and
technology-related parameters, which must be averaged over, eliminated by
optimization, or varied. In all these examples, the typically rather large parameter
space precludes a purely numerical solution; analytical, heuristic, and experimental
data, as well as intuition, must be brought to bear if the final goals are to be
achieved." In other words, the numerical simulations are to be guided and inspired by
ground-breaking measurements and flow visualization, mostly with non-intrusive
techniques: Digital Particle Image Velocimetry (DPIV), Laser-Doppler Velocimeter
(LDV), Time Resolved PIV, pressure sensitive paints, and other means which will
surely emerge in the years to come. These must be augmented with large-scale

benchmark experiments to guide the numerical simulations at very large Reynolds
numbers.

Much progress has been made during the past decade, both numerically and
experimentally, toward the understanding of the kinematics (vice dynamics) of VIV,
albeit in the Jow-Reynolds number regime. The fundamental reason for this is that
VIV is not a small perturbation superimposed on a mean steady motion. VIV is an
inherently nonlinear, self-governed or self-regulated, multi-degree-of-freedom
phenomenon. It presents unsteady flow characteristics manifested by the existence of
large-scale structures, sandwiched between two equally unsteady shear layers. There
is much that is known and understood and much that remains in the
empirical/descriptive realm of knowledge: What is the dominant response frequency,
the range of normalized velocity, the variation of the phase angle (by which the force
leads the displacement), and the response amplitude in the synchronization range as a
function of the controlling and influencing parameters? Industrial applications
highlight our inability to predict the dynamic response of fluid-structure interactions.
They continue to require the input of the in-phase and out-of-phase components of the




lift coefficients (or the transverse force), in-line drag coefficients, correlation lengths,
damping coefficients, relative roughness, shear, waves, and currents, among other
governing and influencing parameters, and thus also require the input of relatively
large safety factors. Fundamental studies as well as large-scale experiments (whose
results are disseminated in the open literature) will provide the necessary
understanding for the quantification of the relationships between the response of a
structure and the governing and influencing parameters.

The difficulties experienced in describing the nature, identifying the occurrence,
and predicting the characteristics of vortex induced oscillations of bluff bodies and
galloping (to a lesser extent) have been reviewed by Parkinson (1974), Sarpkaya
(1979), Griffin and Ramberg (1982), Bearman (1984), Parkinson (1989),
Pantazopoulos (1994), Sarpkaya (1995), and in a number of books (Chen, 1987,
Blevins, 1990; Naudascher and Rockwell, 1994; Sumer and Fredsoe, 1997; Au-Yang,
2001, Zdravkovich, 1997, 2003, just to name a few) and, less formally, in practically
every doctoral thesis, as part of the obli gatory ‘previous studies’ section.

This review is not a flat chronology of scientific/engineering developments in
VIV and does not attempt to refer to every work that has ever been published, but one
that seeks to provide physical insight. It makes no promises that are either
excessively pessimistic or unreasonably reassuring. It encourages cross-stimulation
between relatively idealized physical and numerical experiments and far more
complex technological applications, often found in books and numerous conference
proceedings (see, e.g., Ziada and Staubli, 2000; Molin, 2002).

A separate section is not devoted to the discussion of flow about fixed bluff
bodies. Reference is made only to specific fixed-body observations, measurements,
computations, and deductions, as needed. The flow about fixed bluff bodies require
and/or give rise to circumstances (influencing parameters) mostly beyond the capacity
of the experimenter to control. Some of these are the finiteness of the body or the
aspect ratio (as in the case of aircraft wings and ensuing end conditions), mobile
separation points on curved surfaces, three-dimensional behavior over two-
dimensional bodies, unpredictable (or difficult to predict) spanwise correlation,
nonquantifiable growth of the disturbances in the wake, in the shear layers, and in the
boundary layers (before and after separation). Furthermore, one may need to consider




the distribution of the ambient velocity and turbulence (intensity and integral length
scales), blockage ratio, surface roughness, yaw, body deformation, temperature
gradients, stratification, bottom and free-surface effects, and the impossibility (at the

start of this century) to perform direct numerical simulations at Reynolds numbers
larger than about 3,000.

In spite of most of these complex circumstances, the Strouhal number {St =
JD/U, after Cének (Vincent) Strouhal (a Czech scientist), emerges as the most robust
parameter, followed by the mean base pressure whose instantaneous values can be as
high as —0.2 and as low as -3.5, (Zdravkovich 1997, p. 133). Even the crudest
numerical simulations or experiments predict the Strouhal number with sufficient
accuracy. However, as noted by many researchers over the years, this is as much an
advantage as it is an obvious shortcoming because the robust parameters do not serve
as unique identification cards for the integrated effects of the individually
nonquantifiable parameters. In fact, one or two parameters into which we can lump
our inability to account for all the influencing parameters do not seem to exist. This
is partly because some of the influencing parameters can become governing when
they exceed certain critical values. For example, ambient turbulence may change the
transition in the wake, in the separated shear layers, in the boundary layers in the
vicinity of the separation zone (leading to possible reattachment of the flow), and in
the boundary layers upstream of the mobile separation points. Thus, ambient
turbulence (possibly quantifiable in terms of its four integral length scales and eddy-
dissipation rate) may significantly affect the flow around the VIV suppression
devices, and hence, may affect their performance. Then the question naturally arises
as to what are a handful of parameters that could possibly serve (albeit imperfectly) as
unique identification cards for the intended purpose. The most obvious candidates

are those that exhibit large scatter in every experiment (confining ourselves to steady
flow about smooth circular cylinders).

Measurements during the past century identified the fluctuating lift in steady flow
about a cylinder at rest as the most likely quantifier of the combined effect of the
influencing parameters; e.g., see Norberg (2003) and references cited therein. Thus,
having a representative time record of the lift force and its complex demodulation
analysis, in addition to the spectra and the r.m.s. (root-mean-square) value of lift,




would be most desirable. As noted above, it would be equally desirable to have a
measure of the turbulence distribution, eddy-dissipation rate, and the integral length
scales (x, y, z, and f) of the ambient flow. As to the flow around the cylinder, the
extension of the current understandi ng of the Gerrard-Bloor transition waves and their
disappearance in the range of Reynolds numbers from about Re = 2x10* to 5x10°
(Bloor, 1964; Bloor and Gerrard, 1966, Gerrard, 1978; Zdravkovich, 1997, Norberg,
2003) to unsteady flows would be quite valuable.

Measurements similar to those noted above are equally desirable for a VIV body
undergoing forced or self-excited oscillations in steady uniform or sheared flows. It
appears that for such flows the fluctuating lift and the phase angle (between the total
force and the displacement) or the ‘in-phase’ and ‘out-of-phase’ components of the
transverse force could serve as suitable identification cards for the integrated effects
of some of the important parameters, €.g., to assess the effects of Reynolds number on
the correlation length along the cylinder, on the wake modes, and on the state of
transition-to-turbulence in the free-shear layers emanating from a cylinder undergoing
VIV at a given A/D for a range of Re or at a given Re for a range of A/D. However
desirable, the sensitivity of the transition waves to VIV has not yet been investigated.
Apparently, direct measurements will be a formidable task. Evidence, albeit

indirectly, must be gathered to identify, for example, wake and response phenomena
which occur only at relatively small Reynolds numbers.

The character of the separation, more specifically, the excursions of the separation
point (the mean angle plus fluctuations), their dependence on surface conditions, the
upstream turbulence, the motion of the cylinder, the frequency spectrum of the
fluctuations of the separation angle require serious investigation, particularly for
comparison with direct numerical simulations of VIV using simulated ambient
turbulent flow. In summary, it is interesting to note that a phenomenon as robust as
the vortex shedding gives rise to forces as unpredictable as the lift force whose power
can be fully appreciated only when one tries to eliminate VIV without excising the
after body. In fact, it may be more advantageous to predict and thereby to avoid the
vortex induced vibrations than to attempt to eliminate them. After all, the fluctuating

lift will always be there, with or without VIV, and the pure circular cylinder will
always be the preferred shape.




2. Nomenclature

As all disciples of VIV know, the literature is rife with too many f’s. It is not
unusual to find papers in which as many as three different symbols are used to denote
one specific frequency. The reading of many papers is made difficult partly because
the subscripts do not help one to immediately recognize what they represent and
partly because the same author uses a new set of S’s in his follow-on paper. The
major parameters should be equally applicable to both forced and self-excited
oscillations in physical and numerical experiments. The use of parameters that are
part of the problem (rather than part of the solution) further complicates the matter
and does net allow one to make comparisons with numerical simulations. The advent
of powerful computers has increasingly forced the formulation of the VIV problems
in mathematical and CFD terms. With these thoughts in mind, we purposely choose

two- or three-letter subscripts to enhance the instant recognition of the most important
symbols.

Jwac: the frequency measured in vacuum, as the only natural frequency [fia =
(1/2m)(k/m)"?], where k denotes the linear spring constant and ‘m’ the mass of the

oscillating body. Its relation to the frequency measured in air and water will be
discussed later.

Jex: the frequency of oscillation of a (forced or self-excited) body, meaning the

excitation frequency, regardless of whether there is lock-in or not. At lock-in Jex= foom
(the common frequency), (1/27)[k/(m+Am)"?].

Jft: the vortex shedding frequency (or the Strouhal frequency) of a body at rest. It
is uniquely related to the velocity of the flow and the characteristic size of the body

through the Strouhal number St = 7, D/U where U is the steady ambient velocity of
the uniform flow.

Jos: the vortex shedding frequency of a body in motion (forced or self-excited). In
the lock-in range, £, becomes increasingly smaller than J: until the lock-out.

A cylinder may be forced to oscillate at any frequency and amplitude within
reason. Furthermore, one is at liberty to change the frequency and/or the amplitude
content of the oscillations. Outside the synchronization region(s) the force
experienced by the body will have both the Strouhal and body oscillation frequencies.




In other words, it is understood that in the periodic- and quasi-periodic non-lock-in
regions, the two frequencies (f;, and Jex) will appear awhile, and then, at a slightly
higher frequency, the synchronization will occur, leaving only one frequency, i.e., Jeom
= Jex. However, one must hasten to note that in self-excited oscillations one should
not expect perfect synchronization because of the continuous interaction between the
body and the fluctuations of added-mass, amplitude, correlation-length, and the phase
angle. This is distinct from the beating motion of a cable undergoing amplitude-
modulated oscillations by excitation at two or more frequencies wherein the vortex
shedding frequency alternates between the imposed frequency and the Strouhal
frequency (see, e.g., Nakano and Rockwell, 1991).

The following are identified as the most important dimensionless parameters: Re
= UD/V, feomfst OF fox /fy 08 (1/ V,S1), fox lfac, Ve = UlfexD, (1/'V,) = fo,D/U, V,St = St
/fex. Finally, £, and £, will be introduced for those in dire need of a frequency in still

water or in still air. Additional parameters, controlling and influencing VIV, will be
discussed later.

3. Introduction

An all-inclusive definition of a self-exciting or, better, self-regulating ‘Bluff
body’ does not exist. It can be described only in general terms by relying on the
readers’ imagination. It is an elastic or elastically-mounted fore-and-aft body of
proper mass and damping whose cross-section facing the ambient flow at high-
enough Reynolds numbers gives rise to separated flow and hence to two shear layers,
which interact with each other and bound an unsteady wake. A body with no aft
section (e.g., a D section with a flow from right to left) behaves like a bluff body but
does not present an aft profile on which the alternating lift force can act. For the

purpose of this review, a body capable of giving rise to VIV will be called a *VIV-
Body.’ '

Numerous experiments have shown that a VIV-body (e.g., a circular- or square-
section cylinder) with material damping ¢, (determined in vacuum, especially for
sharp-edged bodies) and proper reduced mass m'=(m/L)/(pfftD2/4), or m* = p,/ps
with p, = (m/L)/(nD2/4) as the ‘mean mass density,” may be excited by the vortices it
sheds if it is mounted on springs and exposed to a steady uniform flow. When the




prevailing vortex shedding frequency f;; (not always close to f;,) and the excitation
frequency fe; of the body approach a common frequency f;,m, the body begins to
experience relatively small vortex induced oscillations. These are controlled by the
spring constant, body mass, structural damping, the density and the motion of the
fluid surrounding the body, plus a number of difficult-to-quantify influencing
parameters Sp, to be called Schewe parameters (1983). This is followed by a
substantial increase of the coherence length (Koopman, 1967a; Ferguson and
Parkinson, 1967; Toebes, 1969; Ramberg and Griffin, 1976 (for oscillating
cylinders); Mansy, Yang and Williams (1994) (for stationary cylinders); and Novak
and Tanaka, 1975 (in smooth flow).

The vortex excited oscillations increase the vortex strength (Davies, 1976;
Atsavapranee, Benaroya, and Wei, 1998) when the amplitude in the transverse
direction exceeds a threshold value of about 0.1D, (it is about 0.02D for the in-line
oscillations, see. e.g., Mandini, 1961; Sainsbury and King, 1971; Dickens, 1979;
Okajima et al., 2002; Sugimoto, et al., 2002, and the references cited therein). The
ratio of the circulation of the nascent vortex to that of the shed vortex is about I7T, =
0.51+ 0.08 for the stationary cylinder (Atsavapranee et al., 1998) in agreement with
those reported in the literature (Berger and Wille, 1972). For the cylinder oscillating
in the lock-in range (V, = U/fexD = 4 to 8), the ratio of the vortex strength to the total
supply of circulation in one shedding period II, is found to be 0.66 + 0.09. This
conforms Sarpkaya’s findings (1963) in accelerating flow about cylinders.

If the velocity U and hence the amplitude are increased (gradually) to new values,
the diameter ‘seen’ by the flow (or the spacing between the shear layers defining the
virtual body) increases initially, at least for small amplitudes (see, e.g., Di Silvio
1969). The apparent ‘increase’ in D is compensated by the real increase in velocity
U, thus keeping the vortex shedding frequency nearly constant. This represents a
departure from the vortex shedding frequency of the fixed cylinder at the new
(increased) ambient flow velocity. In other words, the self-excitation begins with a
real decrease in the frequency of vortex shedding to a value close to f;,m, which may
be close to but not equal to that obtained from pluck tests in still water. The vortex-
shedding mode and frequency change most to match f,». Apparently, the body
motion is dominant (but not invariant) in the sense that it accommodates somewhat




the changes in vortex shedding by letting the flow change its virtual mass and hence
its frequency and acceleration as both the flow and the body arrive at a common
frequency to which the body responds with exuberance: the matching of the

frequency of the prevailing dynamics of the vortical wake with the frequency of the
body oscillation.

Figures 1 and 2 show two interesting examples. The first (Fig. 1, after Feng,
1968) was conducted in air with a single-degree-of freedom flexible cylinder with a
relatively large mass (m" = Pr/Pair = 248, { = 0.00103, m"¢ = 0.255) and relatively
large Re, varying with V, = U/farD, from 10°to 5x10*. The second, Fig. 2, compares
Feng’s data with those obtained by Khalak and Williamson (1999, hereafter referred
to as KW) in water with a single-degree-of freedom flexible cylinder with a relatively
small mass (m" = Pr/Pwr = 10.1, £ = 0.0013 and m'¢ = 0.013) and smaller Re. In
both self-excited cases, the Reynolds number increases along the ¥, axis because Jain
Jwr and D are kept constant and only U or Re is allowed to vary as prescribed. This is
unlike the forced oscillation experiments in which Re is kept constant and the
frequency of excitation is varied. KW (1999) stated that “our studies here and in
Govardhan & Williamson (2000), for Re = 3,500-10,000, indicate that it is principally
the parameter (m*(), which influences whether the upper branch will appear or not.”
The existing facts do not support their assumption for a number of reasons: (a) for
steady flow about a stationary cylinder, the ‘eddy formation length,’ Ly, shrinks from
L= 19D at Re = 5x10° to Ls=1.1D at Re = 14x10’ and the distance to the center of
the transition region (transition from a laminar to a turbulent free shear layer)
decreases from about L, ~ D to I, ~ 0.4 D (Zdravkovich, 1997). These change the
character of the free shear layers and hence that of the vortices emanating from them.
In fact, Zdravkovich (1990) was the first to suggest that the occurrence of a jump to
an upper branch in Meier-Windhorst experiments (1939) might be a Reynolds
number effect. Clearly, the physics of the shear layers, in general, and that of the
unsteady shear layers, in particular, is very complex. For this reason the sensitivity of
the transition waves due to VIV (even for a single-degree of freedom) has not yet
been directly investigated. However, the experiments of Carberry (2002) and
Carberry et al. (2002) with oscillating cylinders (with Reynolds numbers in the same
range as that of KW) provide direct evidence to show that the phase angle ¢ and, in
particular, the lift coefficient C1, significantly increase (as much as 100%) with
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Fig. 1. Response and wake characteris-
tics of a spring-mounted cylinder freely
oscillating in air : m" = 248, { =
0.00103, m'¢ = 0.255), and Re (varying
with ¥, = U/f,,D) from 10*to 5x10*
(Feng, 1968). :

Fig. 2. A comparison of Feng’s
maximum A/D versus fo/far data, (Fig.
1), with those obtained by Khalak and
Williamson (1999) in water with a
single degree of freedom flexible
cylinder (m* = 10.1, { = 0.0013, m'{ =
0.013, and Re varying from 3x10°to
10%; (a) Feng’s data has only two
branches (initial and lower). The
Khalak and Williamson data (4/D
versus UlforD) has three branches
(initial, upper, and lower), a much
larger peak amplitude, and a broader
synchronization range.




increasing Reynolds number (Re = 2,300, 4,400, and 9,100) for a given A/D, and with
A/D for a given Reynolds number (up to A/D values of about 0.5).

Feng’s data (4/D and phase @ versus U/f,;,D), at higher Reynolds numbers (10*to
5x10%), have only two branches (initial and lower). The KW (1999) data (4/D versus
UffurD), at lower Reynolds numbers (3,500-10,000) has three branches (initial,
upper, and lower), a much larger peak amplitude, and a broader synchronization
range. It must be emphasized that the horizontal axis in both figures denotes U/f,,,D
and U/f,»D, as well as the increasing Reynolds number, Re = UD/v. In all such free
VIV experiments the frequency £ (or £,y) and D are kept constant (along with m"
and {) and the variation of A/D with U or with the Reynolds number is plotted from a
minimum to a maximum Re. Evidently, Re may be kept constant by maintaining U,
D, L/D, k, ¢ p; and v constant and varying only m in p,, = 4m/(zLD’) and hence Soac
in V, = Uff,ucD or in Jex/foac.  Such experiments, which constitute the essence of our
on-going VIV research, will define a 3-D space showing A/D versus f,./f;.. in each
plane of constant Re. This will enhance the understanding of the various regimes and
their dependence on Reynolds number, shear layer instability, mass ratio or pm/pur,
material damping, aspect ratio, modes of vibration, modes of vortex shedding, abrupt

as well as gradual changes in the phase, and the degrees of freedom, along with
several other parameters, to be discussed later.

As noted by Huerre (2002), “vortex shedding is represented by a global mode,
ie, a self-sustained time-periodic state characterized by a specific spatial structure
and a frequency, which is the same throughout the flow domain.” The freedom
provided to a body through elastic mounting is capable of modifying the character of
the global mode, i.e., modifying both the frequency and the spatial structure of the
near wake. In any case, the body vibrates neither at Jurr (for VIVs in water), nor at f;,
(for VIVs in air), nor at Jst of the fixed body. Surprisingly, synchronization
(sometimes referred to as the lock-in, lock-on, vortex capture, or frequency capture)
occurs not only near £, but also over a wide range of flow velocities. It appears that
‘lock-in’ or ‘lock-on,” ‘vortex capture’, or ‘frequency capture’ are misnomers. In

fact, one needs to redefine VIV to make a distinction between the two distinct roles,
excitation and driving, played by vortices.

12




Excitation means that the vortices can and do excite the body, even when the out-
of-phase component of their lift force is relatively small (in comparison to mechanical
restoring force), provided that their shedding frequency f;is close to the prevailing
frequency of the body. This is like a single degree of freedom system with small (but
none zero) viscous damping. Thus, even weak vortices in some regions of f./f;: can
excite a body to large amplitudes when the body and the vortices arrive at a common
frequency feom, (in the region of f../f, from about 0.5 to 0.9).

The driving ability of the vortices ensues from their particular modal dynamics to
give rise to a sufficiently large out-of-phase lift component in certain regions of fo/fs
(from about 0.9 to 1.0). Thus, the excitation function of the vortices is a mandatory
requirement for the inception and maintenance of VIV. However, the effectiveness of
their driving function depends on a number of parameters (the range of f./f
Reynolds number, damping, virtual mass of the oscillating system, and some
influencing parameters).

It is clear from the foregoing that to sustain a self-excited, self-limiting resonant
response, the motion of a freely-vibrating VIV-body interferes at proper amplitudes
and frequencies with the mutual interaction of the shear layers and becomes a
dominant part of the overall instability mechanism: shear-layer interaction leading to
vortex shedding, leading to alternating transverse and modulated in-line forces,
leading to body motion, leading toward the common frequencies of the excitation and
response in respective directions. Thus, the interaction of the body and the flow
under proper conditions serves as the magnifier, organizer, and synchronizer of the
phenomenon. It is not ever likely to happen at a constant amplitude and frequency for
the freely oscillating bodies because of the significant amplitude/frequency/added-
mass modulations. In the words of one of the pioneers (Gary H. Koopmann, 1967a)
“when the wind velocity approaches the boundaries of the resonant region, the
shedding frequencies are close enough to the natural frequency of the system to cause
the system to respond in short bursts of periodic motion in the plane to the direction
of the wind. If the motion during one of these bursts is large enough to correlate the
vortex wake along the span, the cylinder jumps to a higher displacement amplitude
than before and a steady-state oscillation follows. Once inside this instability
boundary, the cylinder motion controls the wake frequency and the resulting
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oscillation takes place at the natural frequency of the system” In addition, “as the
wind velocity is slowly increased in the resonant region, the displacement amplitude

of the cylinder steadily increases until at some definite velocity, a peak displacement
amplitude is reached.”

Cheng and Moretti (1991) conducted a series of experiments with a circular
cylinder subjected to forced transverse vibration in a uniform cross-flow at Reynolds
numbers of 1,500 and 1,650. They have measured the prevailing vortex shedding
Jrequency £, with hot-film probes, placed 4D downstream and 2.5D across from the
center of the cylinder. They have varied Jex/fsr (driving frequency/Strouhal frequency
for a stationary cylinder) from zero to 4.5 and the amplitude 4/D from zero to 0.75.
The driving frequency was monotonically increased to avoid hysteresis effects.
Figure 3 (for 4/D = 0.05, Re = 1,500 and for 4/D = 0.235, Re = 1,500) show
representative data identifying the relevant sub-harmonic, non-harmonic, and super-
harmonic wake frequencies. When Jfusis near £, on a horizontal line given by £,/ f, =
1, fs is unaffected by the excitation. However, when £, falls on a line from the origin
with a slope of unity, the vortex structure in the wake locks onto the excitation
frequency (f../ f:= 0.5 to 1.6). A further observation is made that Jfustends to decline
with increasing excitation, possibly due to the widening of the wake. A more recent
set of data (Fig. 4) by Krishnamoorthy et al. (2001) shows the wake frequencies as a
function of the oscillation frequency, vortex shedding frequency, and remaining wake
frequencies for A/D = 0.22 and Re = 1,500. Cheng and Moretti (1991) found that the
lock-in range exhibits an onion-shaped region as shown in Fig. 5a. At small
amplitudes, this dependence is essentially the same as that found by Koopmann
(1967b) and Bublitz (1972). The center frequency of the lock-in is slanted toward

lower frequencies, and the Reynolds number has a strong effect on the upper
frequency lock-in boundary.

Vickery and Watkins (1962), Hartlen, Baines, and Currie (1968), Blevins and
Burton (1976), and Pantazopoulos (1994) have provided extensive data for 4/D
versus the lift coefficient C, for a variety of conditions. Figure 5(b) shows that C;
increases with 4/D up to A/D = 0.5 and then decreases rapidly with increasing 4/D.
The comparison of Figs. 5(a) and 5(b) shows that at large 4/D the lock-in range is
narrow and Cy, is relatively small (weak vortices). If 4/D is reduced (e.g., by a strake
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or a similar passive-suppression device in water, with relatively little effort), the
motion moves in the direction of rapidly increasing C; and increasing lock-in range.
This stiffens the resistance to further reduction in 4/D because of the ever increasing
strength and coherence of the vortices shed by the cylinder. In other words, the
ability of the suppression device to breakup the coherence and to overcome the strong
lift forces is rendered increasingly ineffective. Consequently, the suppression device

cannot reduce A/D 1o values smaller than about 0.5 in a wider lock-in range. If the

maximum 4/D of the cylinder is about 0.7 (in air) to begin with, the vortices are as
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strong and correlated as they will ever be. Any decrease in coherence caused by the
suppression device further decreases C; in a narrowing range of lock-in, eventually
suppressing the oscillations. Clearly, the phenomenon is far more complex and the
suppression achievable in air or in water depends on the Reynolds number, end
conditions, and the type, relative size, and configuration of the passive device used.

For long, rigid or flexible structures (e.g., a cable), the phenomenon is further
complicated by the fact that the structure tends to respond at a variety of frequencies
over its entire length. This, in turn, gives rise to additional and omni-directional fluid
forces whose prediction is at best approximate. When there is no synchronization
(lock-in), the driving fluid force and the structure oscillate at their own frequencies.
In field tests, a locked-in condition or a standing wave profile may not occur on long
wires towed in the ocean (Alexander, 1981). There is no total spanwise correlation
along very long structures placed in the ocean environment partly because
cooperating instabilities preveﬁf such coherence, even in well-controlled laboratory
experiments, and partly because larger amplitude disturbances and omni-directional
waves and currents surely prevent anything other than short coherence lengths (an
extensive table is given by Pantazopoulos, 1994). Only the relatively short test
cylinders or cables result in well-separated modal frequencies, reducing the effects of
modal interaction and enabling single-mode lock-in to be studied in some detail (Iwan
and Jones, 1987). A fitting summary of the foregoing is given by Kim et al. (1986):
"Multimoded non-lock-in response did occur when the mean shedding frequency fell
between natural frequencies. At these times, three or four modes were present in the
cross-flow response. The in-line response would at the same time have several
modes. Under lock-in conditions, the excitation bandwidth is very narrow. Under
non-lock-in conditions, even with very uniform flow, the excitation bandwidth
broadens substantially. Under such circumstances, the lift force is best characterized
as a narrow band random process with sufficient bandwidth to excite two or more
adjacent modes. Lock-in occurs if and only if the separation of the natural
frequencies of the cylinder are large compared to the bandwidth of vortex-induced
forces." Clearly, the vortex shedding, the character and timing of the vortices and the
amplification of the driving force are inextricably related. Also, self-excitation

without lock-in is common but self-regulated lock-in without self-excitation is
impossible.

17




If a cylinder is free to oscillate in both the transverse and in-line directions, the
common frequencies of the body and the driving forces in their respective directions
may lead to lock-in and the axis of the body traces the path of figure eights (Moe and
Wu, 1990; and Moe, et al., 1994: Sarpkaya, 1995). The figure-eight loop is caused
by the considerable variation of drag force during large amplitude oscillation. Dye
(1978) tested a cantilevered cylinder in water and made the following observations:
“During the swing of a cylinder from a dead-end, the wake is tilted and the projected
drag in the velocity direction is reduced. Once the dead-end is reached, the wake
realigns with the velocity and the drag force is increased. The cylinder is pushed
back along the maximum amplitude line before the wake becomes tilted again.”
Zdravkovich (1990) noted that “the two-degree-of-freedom response is the interaction
of the streamwise synchronization at Vi = UffD ~ 25 with the transverse
synchronization at V, ~ 5”. 1Itis a well-known fact that (see, e.g., Sarpkaya, 1979) for
1.7 <V, < 23 (the so-called first instability region) oscillations occur in the in-line
direction and the vortices are shed symmetrically. In the interval 2.8 < V,< 3.2, (the
second instability region), the vortices are shed alternately. Chen and Jendrzejczyk
(1979), working with a cantilevered tube in water, varied the reduced velocity from
1.92't0 4.92. He found ‘beating’ typical of the pre-synchronization at ¥, = 4.53, as

shown in Fig. 6. A single-degree-of freedom system is inhibited from exhibiting
these intricate variations.

The mobility of the separation points is important but not necessary for
synchronization (e.g., for a square or rectangular cylinder). The separation points on
a smooth stationary circular cylinder trace an arc whose magnitude depends on Re
and the frequency and amplitude of the flow oscillation (Sarpkaya and Butterworth,
1992; Sarpkaya, 2002). It is understood that the characteristics of turbulence of the
approaching flow at each cycle depends on the energy stored in the fluid and is not
independently controllable. In general, the point of separation on a cylinder depends
not only on the pressure gradient but also on the type of unsteadiness of the ambient
flow (e.g., sinusoidal), turbulence upstream of the separation points, roughness of the
surface or other excrescencies, symmetry or the asymmetry of the cylinder, taper
along the cylinder, presence of salient edges, and the mode of vortex (or vorticity)
shedding. For a cylinder undergoing VIV, the actual instantaneous value of the wake
angle is greater than that between the ambient flow velocity and the relative fluid
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velocity (Mei and Currie, 1969; Raudkivi and Small, 1974) and the oscillation of a
cylinder enhances both the strength of the vortices and the excursions of the
separation points. Detailed discussions of the oscillation of bodies with salient edges
may be found, for example, in Ongoren and Rockwell (1988a,b), Lotfy and Rockwell
(1993), Deniz and Staubli (1997, 1998), and in the numerous references cited therein.

The lock-in also occurs at excitations that are superharmonics of the shedding
frequency (see, Figs. 3 and 4). Furthermore, the lock-in regions for the odd-number
superharmonics appear to differ from those for the even-number superharmonics
(Olinger and Sreenivasan, 1988; Cheng and Moretti, 1991; Rodriguez and Pruvost,
2000). This is undoubtedly related to the nature of the shedding of the vortices.

In the following, we will discuss a number of fundamental topics which are
inextricably related to VIV and which are of major importance to understanding the
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intricate relationships between the governing parameters and the observed or
predicted dynamics of the oscillating system.

4. Added mass and virtual mass

Added mass is one of the best known, least understood, and most confused
characteristic of fluid dynamics. It exists in all flows about bluff bodies. However, it
manifests its existence, like all masses, only when it is accelerated. It depends on the
type of motion of the body or the fluid about the body and its wake, proximity of
other bodies, free surface, and time. It can be plus, it can be minus, depending on the
relative direction of the drift. Its inviscid-flow values (tabulated in books and special
reports) often give the impression that they are applicable to all unsteady viscous
flows at all Reynolds numbers. Such an impression is so prevalent that one often
encounters general force expressions or force decompositions for viscous flows using
a velocity-square-dependent drag force plus and an ideal inertial Jorce or frequency
expressions using the mass of the body plus the ideal added mass [using C, = (added
mass /displaced mass) = 1 for a cylinder]. This is in spite of the fact that Stokes
(1851) showed almost 150 years ago that viscosity does affect the added mass (even
in simpler flows) and that if the ideal inertial force is subtracted from the total force it
still leaves some inertial force in the so-called ‘vortex force.’ In other words, in
unsteady flows neither is the drag equal to its state-state value nor is the added mass

equal to its inviscid flow value, both are affected by viscosity and acceleration
(Sarpkaya, 2001).

The effect of the smooth evolution of the unsteady viscous flow is expressed by
Basset (1888) with a ‘history term,’” which yields exactly the same result as the
viscosity-dependent terms in Stokes’ solution, but draws attention to the fact that
unsteady flow is not a juxtaposition of instantaneous steady states. Only if the body
is started from rest in a fluid otherwise at rest, the initial value of the added mass is in
agreement with its ideal value because the vorticity is still confined to a thin sheet on
the boundary. Sometimes this very special case is used to ‘prove’ that the added mass
coefficient C, for a circular cylinder is ‘always’ equal to unity. There is, of course,
nothing wrong with the proof as long as it is not generalized to viscous flows for

times greater than an infinitesimally small Ar. Even though Stokes’ solution is valid
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only for unseparated laminar flows at small Reynolds numbers and amplitudes, the
fundamental concepts gleaned from it are universally applicable to all unsteady flows

about bluff bodies and to all 21 independent components of the added mass
coefficient.

The added mass has several applications besides those of the problem of
acceleration from rest. As examples of such applications, the following may be cited:
correcting the measured drag coefficient in wind tunnels with diverging walls (due to
convective or both convective and local acceleration), estimating the aerodynamic
forces in cases of buffeting and flutter, calculating the periods of heaving, pitching,
and rolling motions of a ship, and, in general, in calculating forces and accelerations
wherever the kinetic energy imparted to the fluid by the body is not negligible relative
to the kinetic energy of the body itself.

The added mass may be quantified in other ways besides the use of kinetic
energy. Riecke (1888) surmised and, subsequently, Sir Charles Darwin (1953) made
his celebrated discovery that the added mass for a body translating uniformly in an
infinite expanse of perfect fluid equals the drift-volume times the density of the fluid.
The drift mass (similar to the drift mass in Stokes waves) is displaced permanently in
the direction of motion of the body. Darwin and, subsequently, Benjamin (1986)
showed that the individual fluid particles, which are pushed aside by the body in its
forward motion, do not return to their former positions. The paths of the individual
particles are not closed curves but open-ended elasticas. Hence, besides pushing the
particles aside temporarily in passing, the cylinder also displaces the fluid particles
permanently in the direction of its motion. This permanently displaced fluid mass,
enclosed between the initial and final positions of the fluid particles, is in fact the
added mass itself for the inviscid flow. The calculation of the drift mass for a
separated viscous flow is exceedingly complex. It can be achieved only for special
unsteady flows (as in the case of Stokes solution) or experimentally, as will be seen

later. Interestingly, the drift mass is associated with the name of the grandson of the
creator of the theory of evolution.

It follows from the foregoing that the added mass is not a concentrated mass
attached to the centroid of the body. It is distributed throughout the fluid set in
motion by the body. Thus, its magnitude and centroid change with time as the
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intensity and distribution of the kinetic energy of the fluid change with time. For the
numerical experiments, one does not need to know the added mass since the pressure
and the viscous contributions are explicitly incorporated into the solutions of the N-S
equations. However, one does not have a larger range of Reynolds numbers from
which to choose. Furthermore, VIV is not a small perturbation superimposed on a
mean steady motion. It presents strong unsteady flow characteristics manifested by

the existence of large-scale structures for which the use of standard turbulence models
in RANS, LES, and DVM simulations is highly questionable.

The cycle-averaged added mass coefficient C, (= Am/pds), where py is the
density of fluid and ¥, is a suitable reference volume, can be negative, with far

reaching consequences for freely-vibrating cylinders with low mass ratio m" = pw/
Py, because

Co/m” = (4m /m)= C,pslp, (1a)

may approach —1 and the normalized virtual mass

(m+Am)im= (I + C./m") (1b)

may approach zero, resulting in an oscillating cylinder with no apparent or virtual
mass. It has been noted, e.g., by Feng (1968), Bishop and Hassan (1964), and
Sarpkaya (1979), among others, that the transverse Jorce needed to excite a cylinder
to large amplitude oscillations is far greater than that exerted by vortex shedding. 1t
was not clear in the 1970s that the virtual mass of the body may decrease to very
small values. The high-mass ratio cylinders are obviously less affected by the added
mass and its variations. In fact, the significance of several parameters stands out only
at lower mass ratios. These issues will be discussed in more detail later.

It follows from the foregoing that in separated time-dependent flows (such as
VIV), the common frequency (between the body and the vortices) at lock-in, cannot
remain constant throughout the synchronization range because the added mass is a
function of time, the shape of the body and its surroundings, and the type of motion
and orientation of the body through the fluid. For reference purposes, we note that
the negative added mass has been previously discussed a number of times (see, e.g.,
Keulegan and Carpenter, 1958; Sarpkaya, 1963, 1976a, 1976b, 1977a, 1986a, b;
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Vandiver, 1993; Vikestad et al., 2000) and will be discussed again in Section 9. The
negative added mass occurs mostly in the approximate range of 0.5 < f., /fx < 0.85
where fiom/fvac >1, the phase angle and amplitudes are relatively large, and two pairs
of vortices are shed per cycle (to be discussed later). A similar occurrence of
negative added mass in transverse vortex shedding, from a cylinder undergoing
sinusoidal oscillations in a fluid otherwise at rest, has been evaluated and discussed in
great detail by Sarpkaya (1977a).

Subsequently, it will become clear that the fluctuations of the added mass hold the
key to understanding the similarities and differences between the forced and self-
excited vibrations. The fluctuations of the amplitude of self-excited oscillations
(about +10%) impose higher-order harmonics on the cyclic variation of the added
mass. This, in turn, leads to fluctuations in frequency. Their combined effect leads to
further changes in amplitude, added mass, frequency, coherence length, phase angle
and so on. Clearly, if one can eliminate the modulations superimposed on the cyclic
variation of the added mass in self-excited vibrations, one will maintain its amplitude
and frequency constant and thus make the motion behave more like a forced
vibration. When no two cycles are alike, one should expect a large variety of wake
states as the motion transitions from a high lift-phase state to a low lifi-phase state
(sometimes, mistakenly called ‘low-frequency’ and ‘high-frequency’ states, even
through the frequency changes only slightly between the two states). What is of
course remarkable in VIV is that a small change in frequency (say, for/fst O foom/fst)
may cause rather large changes in phase, in wake structure, and thus, in all the
attendant consequences of VIV in or out of lock-in.

S. Governing and influencing parameters

A simple dimensional analysis shows that the parameters ‘controlling’ the
transverse vortex-induced oscillations of a cylinder are the density of fluid py
dynamic viscosity s velocity of the ambient flow U, diameter of the cylinder D,
length of the cylinder Z, spring constant k, mean roughness height of the cylinder &,
structural damping factor {, mass of the body m (with no added mass), mean shear
dll/dy, cylinder taper dD/dy, characteristic turbulence intensity g and the integral




length scales J;; of the ambient flow, and Schewe parameters Sp. Then the
normalized amplitude may be written as,
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where Rey is the Reynolds number beyond which the transition eddies in the free
shear layers disappear (Rey = 2x10* for steady flow), and Re,, is the critical Reynolds
number beyond which the Strouhal number of the vibrating cylinder exhibits a
smooth transition to a higher value (about 0.24), unlike its steady-flow counterpart.
The material damping ¢ is composed of grain friction, dislocation friction (rather
small), and the presence of vacancies (microscopic voids). When a material is
deformed, say by a VIV event, the structure moves against itself, causing the above
phenomena (one or more depending on the structure of the material) to consume
some of the energy of the motion. Thus, damping. Clearly, there are no materials or

structures without some damping and ‘the undamped natural frequency’ does not
exist.

The shear parameter (D/U)(dU/dy) has been suggested by Vandiver (1993) after
consideration of several other possibilities. Humphries and Walker (1988) defined
the shear parameter in terms of a characteristic velocity U, (often as the mid-span
velocity) as (D/U)XdU/dy). 1t is not unique and does not define all the dynamics of
shear, as noted by Vandiver. However, the use of a larger number of shear
parameters is not practicable. The current objective is to use as few parameters as
possible, experimental data obtained from rigid cylinders, and strip theory in
conjunction with approximate correlation-length models, as suggested by
Triantafyllou, Techet, Hover, and Yue (2003). Clearly, when the shear parameter is
small (say, less than 0.01), one would expect longer correlation lengths and cells.
Additional parameters such as the number of excited modes, wave characteristics,
cable properties, axial-end conditions (i.e., free or constrained to move in the axial

direction as the test pipe flexes) may have to be considered but are not included in Eq.




(2). This is primarily because of the fact that there are no programmable means to
quantify some of them (or their interaction with other parameters) at any Reynolds
number. The most important facts about the shear are:

(a) it does not need to create fear as far as safety is concerned (assuming no
complications due to proximity effects to free-surface, bottom- and/or other pipe
lines, stratification, and the strong non-linearity of the shear);

(b) it reduces and broadens the peak amplitude at all Reynolds numbers (from
subcritical to supercritical); and

(c) at high shear parameters (e.g., 0.03), the vortex excitation range usually
extends over a larger reduced-velocity range, but at reduced peak amplitudes
(Humphries and Walker, 1988).

These will be discussed later in connection with VIV at high Reynolds numbers.
The ratio of the longitudinal intégral length scale to the diameter, /;;;/D gives a good
insight into the effect of turbulence. As shown by Basu (1985), the larger the Jj;; /D,
the smaller is the interaction between the free-stream turbulence and the cylinder
boundary layer and wake. As will be noted later, the intensity of turbulence of the
ambient flow plays an important role (within reason) in establishing the critical and
supercritical regimes (with or without the help of distributed roughness) and on the
effectiveness (often degradation) of some singular VIV suppression devices at
sufficiently large Reynolds numbers (Zdravkovich, 1981).

The parameter (D /(]02)(dU/dt), with U, as a reference ambient velocity (say,
prior to the start of the acceleration or deceleration), or in more general terms, the
parameter (D"/U™")(d"U/dt"), must be considered in assessing the significance of
the local acceleration to the convective acceleration. If it is small (Sarpkaya, 1991,
1996a) the flow may be approximated by a juxtaposition of steady states, i.e., by
flows with negligible or no history effects. If large, it is not sufficient to define the
changes in flow velocity with more or less arbitrary or qualitative measures such as
‘increasing velocity,” ‘progressive change of velocity,” ‘velocity with large steps,” or
‘decreasing velocity.” It is a well-known fact that, depending on its magnitude, the

rate of change of velocity (plus or minus), as defined by the subject parameters, gives
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rise to very interesting response characteristics, even for an isolated cylinder or cable
(see, e.g., Sumer and Fredsoe, 1988; Brika and Laneville, 1993; and Frédéric and
Laneville, 2002).  Thus, (DUX)AUIdf) must be quantified during both the
acceleration and deceleration periods to assess the effect of the rate of change of
velocity on the inception of the transient states (e.g., hysteresis, intermittent jumps) in
both numerical and physical VIV experiments. (Sarpkaya, 1991) has shown that the
rate of deceleration at the end of the acceleration period is just as important as the
acceleration period. Obviously, it is not only the rate of change of velocity that can
precipitate hysteresis effects. The rate of change of amplitude and the rate of change
of frequency can produce equally interesting forms of hysteresis and can help to
explain some puzzling observations. Thus, it is necessary to consider and quantify
the following additional parameters in assessing the history effects: (1// )(0A/dt)
and m/U)z (Ofex/01). Such studies will help to resolve the consequences of a specific

unsteady input of given type and duration on the subsequent stages of the
fluid/structure interaction.

All but the last parameter in Eq. (2) can be controlled (some directly, some
indirectly) if one were to dedicate the time and equipment necessary to uniquely
qualify the investigation. However, the Schewe parameters Sp encompass all the
circumstances (influencing parameters) mostly beyond the capacity of the
experimenter to control or to vary systematically. They are unknowable facility-
related constraints or a consequence of unsteady facility-interference coupling. Some
of these are the end conditions, parameters controlling the mobility of the separation
points on curved surfaces, three-dimensional behavior of flow over two-dimensional
bodies, unpredictable (or difficult to predict/control) spanwise correlation and its
possible dependence on the forced or free nature of the vibrations, consequences of
restraining the in-line oscillations, the strong facility-and-amplitude dependence of
the lift coefficient, spectral bandwidth of lift force, shedding frequency bandwidth,
non-quantifiable growth of the various disturbances in the unsteady shear layers,
effects on VIV of the distribution of the ambient velocity and turbulence across the
test section, blockage ratio, size and shape of the end plates, non-uniformity of the
surface roughness, yaw, body deformation, unwanted secondary vibrations of the
body and its support System, noise, temperature gradients, and other parameters
influencing a gjven experimental setup. Often a number of small (presumed
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innocuous) assumptions in analysis and experiments or both may make the
interpretation of the results rather difficult. However, we must also heed Stokes’
(1851) words of wisdom: “Such extreme precision in unimportant matters tends, I
think, only to perplex the investigator, and prevent him from entering so readily into
the spirit of an investigation.” Obviously, all the dimensionless parameters cannot
replace the physical insight that springs from experience and knowledge.

Returning to the discussion of m" [= p,/p;] and { versus m'¢ [= & pu/prl, it is
noted that there is no compelling reason to combine m" with ¢. In fact, Sarpkaya
(1978, 1979, 1995, and 1996a) and Zdravkovich (1990) suggested over the years that
they should not be combined to form a new parameter (or to eliminate an independent
parameter). Nevertheless, it has almost become a common practice, at least until
recent experiments with small m" (large pr and small p,) to combine the two
parameters into a so-called ‘mass-damping’ parameter m'{, (with § = 2(). This
will be discussed in more detail later in connection with the consequences of free- or
self-excited oscillations where the structural-damping-dependent response may not
necessarily be a sinusoidal or stationary random process. Suffice it to note that m", as
well as { play very important roles in VIV. According to KW (1999), the range of
synchronization is controlled primarily by m" (when m'{ is constant), whereas the
peak amplitudes are controlled principally by the product of m'¢ in the range of
Reynolds numbers (3.5x10°-10*) encountered in their experiments. However, The
dependence of A/D on pm, pf, {, frae, and Re remains to be resolved.

The parameter (D/U)(k/m)"?, or its inverse, may be written as V, = U/fyacD using
the ‘natural frequency’ f,. obtained in a vacuum because it is the only natural
Jrequency. All other frequencies represent unsolved or partially solved fluid/structure
interaction problems of the type pioneered by Stokes (1851) and Basset (1888).
Nevertheless, a number of other reduced velocities have been used in the literature for
a variety of reasons, including the need to emphasize the importance of the variation
of one or the other parameter (added mass, phase, in-phase and out-of phase
components of the lift force): V, = U/f,,D, using £, obtained from pluck tests in still
air, or V, = UffurD, using f.. obtained from pluck tests in still test fluid (e.g., water),
or V, = Uff.mD. using the acmal (or common) frequency £, at which the lock-in
occurs at a given velocity. Here a clear distinction must be made between the forced
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and self-excited oscillations. In forced oscillations, fiom = fi = I/T (where T is the
period of oscillation), and it was used by Sarpkaya (1978) to define ¥, = UT/D
against which the force-transfer coefficients were plotted. Thus, foom or fvary as
the period of oscillation is varied. Furthermore, one is at liberty to change the
frequency and/or the amplitude content of the oscillations.

In 1995, Sarpkaya denoted £, by fu (prevailing frequency) to include the self-
excited oscillations. Moe and Wu (1990), working with self-excited as well as forced
oscillations, introduced fy. the frequency “at which the cylinder is actually
vibrating”  Here it is denoted by fom to cover both the forced and self-excited
oscillations. It does not remain constant throughout the synchronization range
because the added mass coefficient Ca in viscous flow is not only a function of the
shape, orientation, and the physical surroundings of the body, but is also a strong
function of the resulting viscous fluid motion. In fact, f.om (either from experiments

or from DNS) can be used together with f£,,. to determine aposteriori the actual added
mass,

am = m{( frae/ fur)’-1] (3a)
or the added mass coefficient

Co=m"[(fra/ fu)*~1] (3b)

Clearly, the cycle averaged value of Am is zero for Jeom = foac, and Am (and C,) are
negative whenever Jeom > frac, regardless of the viscous medium in which the
synchronization occurs at the common Jrequency f.... For experiments conducted in
a dense fluid (say, water), the contribution of the air to the added mass may be
neglected, i.e, fr = f... Then one has, for the added water mass, Am,,,, ~ m[( foa!
Seom)® -11. In any case, C, for a circular cylinder oscillating in water is not equal to
its ideal value of unity. Rewriting the above expression as

Co/m'=2am/m= (Frae! fur)*=1) (3¢c)

it is seen that for a given m", C, is strongly dependent on the accuracy of f,,/ Jeom.
Also, re-writing the normalized total mass or ‘virtual mass’ as




(1 +Ca/m"y = (1 + CapdlPm) = (frac/ fox)’ (3d)

and noting that C, may have negative as well as large positive values for a circular
cylinder (see, e.g., Sarpkaya, 1977b, 1978; Gopalkrishnan, 1993; Vikestad et al.,
2000), one observes that the role of the added mass at high mass ratios is minimal or
that foom approaches fy... However, for small mass ratios, C, becomes increasingly
important as the mass ratio m" becomes smaller, i.e., for a large (positive) C, and
small m", the virtual mass (added mass plus m) may acquire very large values. More
importantly, however, for a relatively large negative C, (say, —0.7) and small m" (for
example, 0.6), the virtual mass becomes negative, a result that is unacceptable. Thus,
one must have C,/m" > -1 or (m*+Ca) > 0. It is clear that bodies of very small m"
will have rather large in-vacuum natural frequencies (f,sc). Thus, under the
circumstances in which C, has a large negative value and the out-of phase component
of the lift force is positive (energy transfer from the fluid to the body), the system can
develop rather large amplitudes. It must be emphasized that the positive as well as
the negative values of the added mass strongly depend on 4/D, as first shown by
Sarpkaya (1977b, 1978), and, to a lesser extend, on the Reynolds number, provided
that the Reynolds number is larger than about 1.5x10* to 2x10*.

Equation (3d) may also be written as,

Lo/ S
m G (Srae/ Sor)

(e)

which emphasizes the role of f../f;; and fi. /fis in determining the ratio of the
normalized mass of the oscillating body to its virtual mass. Only when C, = 0 that
one has fox =fa. For all values of C, <0, fix > fiac, and, conversely, for all values of
Ca> 0, fex <fia. Forced vibration experiments show that C, for 4/D = 0.5, for
example, goes through zero at f../f; = 0.85 (for 4/D = 0.5, for example) and abrupt
changes occur in phase and the energy transferred to the cylinder from the fluid as
Jex/fss decreases, say from, fox /fsr = 0.88 to fox /f = 0.80. For cylinders with relatively
large m’, fox/ fyac remains close to unity, the shedding mode changes from a Karman-
type of vortex shedding (two single vortices per cycle) to two pairs of vortices per
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cycle (to be discussed in more detail later). However, for cylinders with small m", the
mode of vortex shedding remains essentially the same but the change is accompanied
with some intermittency. The importance of these interesting phenomena, leading to
a strong connection between the forces, masses, VIV suppression, and mode and
phase changes will become apparent later.

As to the role of the damping factor, it is rather unfortunate that no systematic
experiments have been reported in vacuum to determine {. During the second half of
the past century, the word ‘damping’ has been used at various times to mean
‘damping in vacuum’, ‘damping in still air’, ‘damping in still water’, and ‘damping in
flowing test fluid’. Furthermore, some experiments were reported without the
damping factor and they were subsequently obtained from tests on pipe or cable
samples by Griffin, et al. (1976). To the best of our knowledge, only Koopmann
(1967a; also reported in Griffin et al., 1976) conducted limited experiments to
determine the ‘structural to the still-fluid damping’ of an elastically-supported 6-mm
cylinder by oscillating it in both air and vacuum. He found that the actual structural
contribution was only 15 percent of the still-air damping. Based on this experiment,
Griffin et al. (1976) concluded that “the decay of the system in still air was
predominantly due to fluid resistance, and the common assumption of negligible ‘in-
air fluid loading’ was not valid.” The consequences of this conclusion are: (a) it is
difficult to compare amplitude data from various sources because of the potential
variations in the relative contributions of fluid and structural damping to still fluid
damping ¢ used in the so-called mass-damping parameter m¢ /pD’; and (b) at
relatively small mass-damping ratios, the comparison of the data obtained in air and
water is further complicated. It is often assumed that one could calculate the mass-
damping either with the damping in air or water. This is not quite accurate because
the actual structural contribution may only be a small fraction of the still-air damping
whereas the ratio of the same structural-plus-air damping to that brought about by the
out-of-phase component of the transverse force in water is negligible. In any case,
“damping in still water,” like ‘added mass in still water’, is only another manifestation
of an unsolved fluid-interaction problem (i.e, the VIV itself), and it is not an
independently controllable parameter (for further discussion, see Batchelor, 1967, p.
357, and Blevins, 1990). However, for VIVs in water, the structural damping term in
the equation of motion may be negligibly small relative to the out-of-phase
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component of the transverse fluid force. It may even be assumed zero in numerical
simulations of VIV in dense fluids.

The concern regarding the reliability of the much-reproduced graph showing the
maximum 4/D versus the so-called response parameter Sg (= 27 St’ Cpn/py), (see,
e.g., Sarpkaya, 1978) provided us with a strong impetus to carry out a series of
experiments with circular rods and tubes in air and in the vacuum chamber of an
existing electron microscope. The ends of the cantilevered (smooth and roughened)
rods were rounded and the free ends of the cantilevered tubes were fitted with semi-
spherical caps. The supporting ends were imbedded in a solid wall (a small hole
allowed the complete vacuuming of the inside of the tubes). The oscillating mass of
each test element was varied by changing L. The mass was varied from 0.0015
slugs/ft to 0.015 slugs/ft. The results have conclusively shown that the ratio of the
actual structural contribution to the still-air damping varied from 0.990 to 0.995,
depending on the frequency of vibration and the shape of the cantilevers. For any one
test tube, the frequencies of vibration in air and in vacuum were identical. It is on the
basis of this conclusion that we have replotted the data compiled by Griffin, Skop,
and Ramberg (1976) and subsequently by Skop and Balasubramanian (1997) in Fig.
7(a) using a linear axis for 4/D. Several attempts were made in the past (Sarpkaya,
1979; Griffin and Ramberg, 1982; and Skop and Balasubramanian, 1997) to devise
semi-empirical relationships or least-square fits to the data shown in Fig. 7(a). The
shortcomings of the previous A/D versus Sg relationships were that they were mostly
curve-fits (except the one proposed by Sarpkaya, 1979) and none was able to
represent the data satisfactorily at higher Sz values. We have devised (in spite of our
long-standing dislike for curve-fits) a new and relatively simple curve-fit given by,

A)l -1.05S
Zl==112 & 10%% 4
(2 @

which may also be written as (4/D)/y= 1.12(0.3SSG , which conveys the
unrigorous but plausible suggestion that Ln(4/D/y) may be, to a first order of
approximation, a linear function of Sg. The dimensionless mode factor ¥ is 1.0 for a
rigid cylinder, 1.291 for a uniform pivoted rod, 1.155 for a taut string or cable, and
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Fig. 7 Experimental measurements of the modally normalized maximum amplitude versus the response
parameter S and the proposed curve-fit (Eq. (4). The data is tabulated in Skop & Balasubramanian
(1997): @, water, c, air. The above figures show: (3) a Log-Log plot; (b) a linear-Log plot, (c) a Log-
linear plot, and (d) a linear-linear plot. In each case Eq. (4) represents the data reasonably well and
makes an unrigorous but plausible suggestion that Ln(4/D/y) may be a linear function of S;.

1.305 for a cantilevered uniform beam. These and other mode factors are tabulated in
Blevins (1990). Figures 7(b) (d) show the Lincar-Log, Log-Log, and Log Lincar plots
of (4/D)/y versus S; and the corresponding curve-fits using the above equation. The
scatter in the data, particularly for Sgless than about 0.5 (i.e., mostly for the experiments
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in water), is of practical as well as research interest and is not entirely due to
experimental errors. It is partly due to the use of relatively small Reynolds numbers
(less than 10*) for which the transition to turbulence on the free shear layers does not
move sufficiently upstream, magnification of the uncertainties in the damping factors,
the end conditions (i.e., the restraint applied to the ends of the cables for or against
axial motion), the history of the motion (e.g., whether a particular steady flow
velocity has been arrived at from a lower or higher value, Brika and Laneville, 1993),
and, most importantly, the particular behavior of the wake and the lift coefficient C;.

6. Linearized equations of the self-excited motion and their limitations

The equation of motion for a body of single-degree of freedom with linear springs
and damping has been known for a long time and constitutes one of the classic
examples in most vibration texts. Briefly, it may be written as

my +cy + ky = C,pDLU* (52)

in which m is the mass of the cylinder, ¢ the linear material damping, k the linear
spring constant, pr the density of fluid, D and L are the diameter and length of the
cylinder, U is the ‘steady’ ambient velocity, and C, is the strongly-amplitude-
dependent lift coefficient. The amplitude of the exciting force, denoted by Cy, and the
phase angle ¢ (between the total force and the displacement) embody the essence of
all that is needed for the dynamics of VIV. Equation (5a) may be reduced to

S’r +2Cyr + yr :(SG / C)(j;:om/ ﬁm)zcy (Sb)

This is a non-linear equation because of the strong dependence of C, on the amplitude
of the cylinder displacement. However, at lock-in the displacement y and the
transverse fluid-force coefficient C, are usually expressed, to an unknown order of
approximation, by sinusoidal functions (known as the harmonic model

approximation) in which the force leads the displacement (the horse leads the cart) by
a phase angle ¢

Y, =(Al D)sin2znf,, t ()
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C,=C sin(2nf, t+ ) (7a)
or

C, = (Ccosp)sin(2n f,,,1) + (C,sing)cos(2r £, 1) (7b)

Clearly, the displacement and acceleration are zero at y = 0 (the mean position) and
the absolute values of the displacement and acceleration are maximum at y = 4. The
cylinder decelerates as it moves toward larger |y| and accelerates as it moves towards
smaller [y| values. It is a well-known fact that in steady flow the angle that the shear
layer separates from a cylinder is affected by the Reynolds number. A shear layer on
a body undergoing VIV is expected to be strongly affected by whether the relative
flow past the cylinder is accelerating or decelerating. Thus, the variations of the total
relative velocity about the cylinder and the alternating nature of the accelerations and
decelerations of the cylinder could lead to highly complex excursions of the
separation points and shear layer transitions. Krishnamoorthy et al. (2001) observed

that “both shear layers develop abrupt double roll-ups as the cylinder accelerates from
the top-dead-center to its mean position.”

The substitution of Egs. (6) and (7) into Eq. (5b) yields the following well-
known expressions for the frequency and amplitude in terms of Pn/prrather than m*

/2
C.Dp,(UY
Jom _ l-—La-—-—&[ ) cosg ®)
vac m Apm fmCD
and
4 1 s( U Y f
—==C, nq,_(___j Ly (92)
D 2 S \foD) [
or
1/2 2
A 1. 1 plp.) (U)
Z-=C L =L 9%
D 2 L 3C me1+Ca pmJ fracD )
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Thus, the linear equations of motion show that 4/D is dependent on C;, the phase
angle 0, £, pr/pm, (UlfiacD), and (1 + Caps/pm)'"? of frac/foom There is no
mathematically derivable direct dependence on such parameter combinations as
(m"+C4)¢, where C, is the potential flow added mass coefficient (C4 = 1.0 for a
circular cylinder), or on yet another parameter f* =[(m +C )/ (m*+CEA)}”2 where
“Ce4 is an ‘effective’ added-mass coefficient that includes an apparent effect due to
the total transverse fluid force in phase with the body acceleration,” introduced by
KW (1999), (in our notation, Cgs= C,). Furthermore, numerical solutions of the
‘exact’ equations of motion do not need, do not depend on, and do not give rise to
such arbitrary parameters as f* =[(m +C,)/ (m"+Cgz)]">.

Equating A/D from Eqs. (9a) and (9b), one has the tangent of the phase angle

zgﬂd con

tang =
Srae™ Jem

(10)

Recalling that C, = m‘[( Joa! fc,,m)2 -1], one has for foom < fyac , 1.€., for a positive
added mass, tang > 0 and for fiom > fuc , i.€., for a negative added mass, tang < 0.
Thus, at feom = fiac , the phase angle shifts by 180 degrees. Conversely, a 180-degree
phase shift corresponds to a change in the sign of the added mass from positive to
negative or vice versa, depending on the direction of the change of f,». It must be
emphasized that any change in C,and thus in phase is not sudden. The
reorganization of the wake occurs over a finite frequency range.

The foregoing analysis shows that A/D is a function of C, (see Fig. 5b), C,
depends on A/D and U/fyucD, feom/fvac varies with U/fi..D, and ¢ depends on ¢ and

Sfeom/foac, and they all depend on the Reynolds number. Nevertheless, one can
reasonably conclude by inserting once pr = p, and then pr = py.-in Egs. (8) and (9b)

that:

(a) (feom/frac)air approaches unity because the second term in the bracket in Eq. (8)
becomes negligibly small and A/D in Eq. (92) may be simplified to

2
g ) C,sing (1)
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(b) (feom/fuac)wtr becomes very small because the said second term becomes of
order unity;

(¢)  (A/YD).r becomes larger than (A/YD)air with decreasing Sg [see Fig. 7 and
Egs. (4) and (9b)];

(d) The suppression of (4/yD),., is more difficult compared to (A/yD),;, partly
because of the much larger ps (for water) leading to a much smaller Sg (= 27
St {pn/py), particularly for small mean mass densities, and partly because of a number
of other issues such as the variation of Cy, the width of the lock-in range, and the
coherence length with A/D, discussed in connection with Figs. (5a) and (5b). Thus,
one needs suppression devices which could successfully reduce C,in water for
amplitude ratios smaller than about 0.5, without excessive drag penalty. As
appropriately noted by Bearman and Brankovic (2002), “it is more difficult to
suppress any resulting VIV in water compared to air because of the much smaller

m*c.” Evidently, the entire suppression issue is relatively more complex than that
posed by S or m*¢ alone.

The foregoing analysis is predicated on the assumption that the frequency and the
amplitude of the oscillations remain constant, as assumed in Eqgs. (6) and (7) for the
displacement and force. Oddly enough, this is more so for the ‘forced’ oscillations
than for the free oscillations. As noted by Schewe (1983), in connection with
stationary cylinders in steady flow, “The time functions of the lift, drag and amplitude
look like sine functions, which are randomly modulated in amplitude and frequency.
The instantaneous total force acting on the cylinder is then the result of the more or
less cooperative behavior of these individual subsystems, which differ slightly from
each other in frequency and amplitude.” Cylinders undergoing VIV exhibit similar
non-stationary, non-ergodic, randomly-modulated amplitudes. As noted by Moe et al.
(1994), nearly harmonic oscillations occur for self-excited vibrations in the lock-in
region. The displacement spectra have narrow bandwidths, yet 10% variation in peak
amplitudes is common and the associated force amplitudes are strongly irregular.
Therefore, the average lift force for the self-excited case cannot be assumed equal to
the lift force for the forced-vibration case, even though the average motion
amplitudes for both cases may be equal. The assumption that the displacement and
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force must depend respectively only on sinwt and sin(wr+¢) renders the problem

more manageable but conveniently avoids the issue as far as the nature of the random
fluctuations of lift, drag, and amplitude are concerned. In fact, it mighi be said that
the analysis of free oscillations on the basis of a single frequency as in Egs. (5b), (6),
and (7), without the inclusion of higher order harmonics, may be unwarranted.

7. Unsteady force-decomposition

The lift coefficient in Egs. (5a) or (7a) or its in-phase component with the cylinder
velocity must be determined analytically, numerically or experimentally if any
progress is to be made toward solving industrially significant VIV problems. It is
much easier and more reliable to quantify the lift coefficient using forced vibrations
because of the constancy of the desired amplitude and frequency. Sarpkaya (1978),
using y =~ Asin Wcomt and U(?) = —U,,c08W.omt, expressed Cp as

¢, =C,sinw, - C,osw,,! (12a)

where ®.om = 27f,omand the coefficients C,,; and Cy, are the Fourier averages, over

many cycles of oscillation (about 100), of the transverse component of the normalized
force acting on the cylinder. They are assumed to depend on 4/D and the Reynolds
number. Equation (12a) may also be written as

C,=-C,inw,,t+C,cosw_,t (12b)

using, y, =(A/D)sin27nf, .t as in Eq. (6) and U(®)/Un,= cosw.omt. Here, C, is the
added mass coefficient and Cy is the drag coefficient. If the body were at rest and the
fluid oscillated about it, C, needs to be replaced by 1+ C, to account for the effect of
the imposed pressure gradient. The genesis of the above equations is the so-called
“Morison-O’Brien-Johnson-Schaaf” equation or the “MOJS” equation (1950),
according to which the time-dependent force exerted on a body moving with the
velocity U(?) in a fluid otherwise at rest is assumed to be a linear sum of an
acceleration-dependent inertial force and a velocity-square-dependent drag force, i.e.,
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The coefficients of the two forces are determined experimentally by measuring the
force and calculating their Fourier or least-squared averages (Sarpkaya, 1976a,b;
1977a, 19864, b; 1987). More intricate formulations of the time-dependent force at
the price of complexity turned out to be arguably not beneficial (Sarpkaya, 198],

1985, 2000, 2001).
For a cylinder oscillating sinusoidally with U = UnSin@,omt, the first term on the

right-hand side of the above equation has often been linearized (provided the
circumstances be such that the non-linearity of the square of the velocity may be
neglected) to yield Eq. (12b) (Sarpkaya 1978). Re-writing Eq. (7b)

C,=(Ccos@)sin(2n Jeon®) + (C,sing)cos(2n Soom?) (7b-R)

and comparing it with Eq. (12b), one has
C,==Cycos¢ and C,=C,sing (14)

from which one can find C. = (Cf + Cj)”2 and the phase angle ¢ = tan!(-C/C,).
The maximum of C;, from Eq. (12b), occurs at 6, = tan"(-C,/Cd) = 7/2 - ¢. In other
words, the following holds true for the linear approximation of the sinusoidal VIV
regardless of whether it is obtained from the assumptions leading to the sinusoidal

displacement and a sinusoidal force with a phase of ¢ or from a linearization of the
MOIS equation:

C b4 C /4
=t -1 ——a = ——— -1 — :—-—0 15
@ = tan ( C] 5~ tan ( C’) 56, (15)

a d

or, combining it with Eq. (10), one has
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As far as the forced oscillations are concerned, the linearized version of Eq. (13) is no
more or no less empirical than the Eq. (7a). However, for the self-excited vibrations,
the original non-linearized form of the MOJS equation is certainly more
representative of the prevailing state of the flow, particularly at industrially
significant Reynolds numbers.

The linearization represents a considerable simplification for both the ocean and
the laboratory environment. The transverse as well as the in-line force for more
complex oscillations (e.g., beating phenomena, oscillations with irregular or
modulated amplitudes) cannot be represented by a two-coefficient model and
certainly cannot be analyzed on a cycle-by-cycle basis in search of a new
phenomenon. One needs to determine the Fourier averages of the said coefficients,
deduced from many cycles (say, 100) to obtain representative results. There will
always be considerable uncertainty stemming from the ambient flow environment and
the Schewe parameters. This, in fact, is one of the fundamental reasons for the
difficulty of dealing with fluid/structure interactions in a non-laboratory environment
and with self-excited vibrations in both nature and in the laboratory environment.

If the motion contains amplitude— as well as frequency-modulated fluctuations
(as in the case of free or self-excited oscillations), one must perform a complex
demodulation analysis to capture the basic features of the data (see e.g., Bloomfield,
2000). In such cases, the assumption of a mean frequency and/or amplitude may
lead to less accurate force components and phase angles. One need not be reminded
that the single most important parameter in VIV is ¢ and its dependence on all the
parameters given by Eq. (2). To emphasize the point, we rewrite Eq. (2) as

(P L 4Am _12(_/5)”2, N
br D poaLp? O\7 5l

DAU DAV, dD _ & Iy s,

Re, —= 2@ Ty @y D o

p=F (17)
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Clearly, ¢ is destined to exhibit large scatter, particularly in tests with self-excited

oscillations and in numerical simulations employing, for example, LES. An orbicular
leaf attached to a tree responds with exuberance to droplets of uniform shape, weight,
and frequency falling on it from a pipette when the frequency and the phase angle
relative to the motion of the leaf are set precisely. When the phase angle is a few
degrees off, the leaf comes to a dead stop even if the frequency is kept the same.

Lighthill (1986) asserted that the viscous drag force and the inviscid inertia force
acting on a bluff body subjected to unsteady motion in a viscous fluid otherwise at

rest operate independently. Accordingly, he expressed the MOJS equation, Eq. (13),
as .

F=C,p(aU/dty, +—;pAPU2Cd (18)

where C, is the ideal inviscid flow value of the added mass coefficient. It is obvious

from the form of the Eq. (18) that Lighthill (1986) meant by “viscous drag force” a
force, which contains no inertial Jorce due to the motion of vortices. Thus, his
second term on the right-hand side of Eq. (18) is only a velocity-square-dependent
drag force. Sarpkaya (2001) has shown conclusively that the above assertion is
invalid. This is rather obvious from the fact that the subtraction of the ideal inertial
force from the total force leaves behind a vortex-motion force or, just simply, a vortex
Jorce which necessarily contains both a ‘velocity-square-dependent’ force and an
‘acceleration-dependent’ inertial force. In other words, the remainder of the total
force (the second term) cannot be expressed as a velocity-square-dependent force
alone (with a simple drag coefficient). Lighthill (1986) stated that “I want to argue
that, as we necessarily move to more refined methods of estimation, we can
appropriately continue to separate hydrodynamic loadings (as Morison’s equation
does) into vortex-flow forces and potential-flow forces ... as Taylor (1928a) did ... .»
This created the impression that the ‘vortex-flow forces’ and ‘viscous drag forces’
were one and the same: a velocity-square-dependent drag force, devoid of inertial
forces. A careful reading of Taylor’s papers (1928a, 1928b) shows that they deal
with the use of distributed sources and sinks to calculate the added mass of airfoils
immersed in an inviscid fluid and the determination of the effect of convective




acceleration on bodies immersed in converging or diverging wind/water tunnels (the
so-called horizontal buoyancy) in steady inviscid flow. They do not deal with
unsteady flows, vortex motion, or “separation of hydrodynamic loading into vortex-
flow forces and potential-flow forces” contrary to Lighthill’s (1986) assertions.
However, we must emphasize that there is nothing wrong in separating the ideal
inertial force from the total force (as done in the industry for many years) as long as
one recognizes the fact that the remainder of the force is still comprised of both drag
and inertial forces, which require a number of additional terms for their correct

representation in a model equation.

Stokes’ 152-year old solution (1851) of oscillating viscous flow about a sphere is
given by,

)= (2 z(ﬁ)“”] on 24, (1+ (nﬁ)”)@nuw) (19)

Clearly, both the inertial and drag components of the force are modified by the effect
of viscosity (so called, Basset’s history terms, 1888) as seen from the following
version of the above equation

1 B 3
(i) Jen L G v oo o

The subtraction, from the total force, of an ‘ideal mass force® (generated by the
displacement of the fluid as the body accelerates) leaves on the right-hand side of the
equation a f-dependent in-phase inertial force and a B-dependent out-of-phase drag
force. Together these two are the unsteady flow forces (the so-called ‘vortex-forces’
in separated time-dependent flows) (Sarpkaya, 1996a, 2001). The history of the
motion (particularly in hysteresis) manifests itself in both the in-phase and the out-of-
phase components of the force.

In vortex induced oscillations, the phenomenon is far more complex. However,
the extraction of the ideal inertial force from the total force (Govardhan and
Williamson, 2000, hereafter referred to as GW) necessarily leads to a net force still
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comprised of an acceleration-dependent inertial force and a velocity- or velocity-
square-dependent drag force, as in Eqs. (13, 19b).

Let us now reconsider Eq. (7b) in a slightly different form and denote the phase

angle between the total force and displacement as @, for reasons which will
become clear shortly

CL(1)=[C, 003, Jsin(21 £,0t) +[C, sin 0 |cos(2 1 1) (202)

and separate the in-phase (inertia) component of the force into two parts: the ideal
inertial force IF (to be quantified later), plus the remainder,

[CLvartax cos¢vatex + IF] Sin(27r j::amt) (20b)

Now, inserting Eq. (20b) into Eq. (20a), one has
Colt)=[Crrppe €050, + IF]sin(2n £, 1)+ [C, sinpy, Jcos2n £ 1) (200)

Obviously, the first term in the first bracket is modified by the addition of the word
‘vortex’ in the subscripts in order to compensate for the second term so that the total
(in phase) inertial force remains unchanged, i.e., only the forces, that are in phase
with each other, can be subtracted Jrom each other. The out-of-phase component of
the force (C; sin@yo) does not change. However, both C, and singy, must
individually change in order to render the out-of-phase component of C; equal to
Cuvortex and Cr, $in@uora = Croorter SINPyortex. This leads to

(L)~ IF sin(28 £, )] = €1 050, e sin(2f )
(20d)
+CL vortex Sin (pvortex COS(2 ﬂf comt )

where the amplitude of the ideal inertial force is given by
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(£2) 4
IF =273t k—?—'ﬁ- %5 (20e)

Furthermore, it is seen that tan @, and tan @y, are related by

tang, ., IF
T _q_ 20
tang,,,, C %0

a

which shows that large differences may occur between the two phase angles when
strong changes occur in C, and/or A/D due to rapid changes in vortex shedding,
hysteresis, or intermittent jumps at some particular values of fion//: (€.8., between the
lower and upper branches in @y or between the upper and initial branches in Prortex)
for a given St af relatively small Reynolds numbers. The foregoing is predicated on
the assumption that the frequency and amplitude modulations are negligible to allow
one to make precise determinations of the subject phase angles. In self-excited
oscillations, this is not always the case. These will be discussed in more detail later.

8. Limitations of the forced and free vibrations

The motivation of this section is not to assess how the forced oscillations can be
used to predict the free VIVs under otherwise similar conditions, but rather to
examine in depth their similarities, differences, and limitations. Obviously, the two
cases are not identical: one is driven internally by the wake at an average frequency f
(dictated by the past and the prevailing state of the motion and the periodic forcing
arising from it) as the Reynolds number increases with increasing U in U/f,D as in
KW (1999) and GW (2000). Furthermore, some or all of the Reynolds numbers in
the synchronization range may not necessarily be larger than Rey, making the
response dependent on both Re (i.e., on the state of the shear layers) and U/f,.D.
Forced oscillations are driven externally at an exact frequency f. at a desired
amplitude A/D and Reynolds number throughout the range of fo/f; or V, = UlfD.
One is limited largely by the lock-in regions and the other to a large range of reduced
velocities and amplitudes. Forced oscillations help to regularize and idealize almost
every aspect of the vortex induced oscillations, leading to nearly pure sinusvidal

oscillations, forces, and almost repeatable wake states. Thus, one has an exact
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knowledge of the frequency of motion and of the magnitude and shape of the
displacement (and hence, of the velocity and acceleration). Even then, however, one
expects and finds differences in the structure of the wake from cycle to cycle, for

example due to changes in the motion of the separation points and the coherence
length.

The bodies undergoing VIV in nature are neither constrained (except by their
supports) nor forced to oscillate at a constant amplitude and frequency. Their reduced
amplitude (4/D) and Reynolds number vary with the reduced velocity and the
accurate determination of their individual effects on the remaining governing
parameters in general and on the lock-in phenomenon in particular becomes difficult
particularly when some or all Re values are below Re. The extraction and
interpretation of reliable force information from free oscillations are more difficult.
This is particularly true when the body responds very rapidly to changes in reduced
velocity as in Feng’s (1968) or in Brika and Laneville’s experiments (1993) in certain
ranges of their reduced velocity V,, = V./2n) = Ui2n JfexD. Thus, neither the
instantaneous center of gravity nor the cycle-averaged value of the virtual mass, nor
the force acting on the body, nor the acceleration of the body is known, except for the
fact that the virtual mass, the force, and the acceleration are nonlinearly related. This
is analogous to deducing information from F = (virtual mass) x acceleration without
knowing any one of the three elements of the most fundamental equation of motion.
In spite of this, it should be the ultimate objective of the VIV research to predict, to
the extent possible, the kinematics and dynamics of self excited vibrations from
forced vibration (physical/numerical) experiments and, equally important, the
dynamics of forced oscillations (say, e.g., drag, lift, and inertia coefficients and the
phase angle) from the physical/numerical experiments with self-excited oscillations.
However, perfect synchronization is not ‘perfect’ and 10% variation in peak
amplitudes of force (in both forced and self-excited oscillations) is quite common, as
shown in Fig. 8 (Moe and W, 1990).  Griffin (1972) carried out both self-excited
and sinusoidally forced oscillations under nearly similar conditions. At the same
average amplitude, the free oscillations exhibited amplitude (and, most certainly,
phase) modulations, similar to those noted above. The average velocities in the wake
were quite similar, but their instantaneous values exhibited the expected

discrepancies. The numerical simulations of Al-Jemal and Dalton (2002, 2003) and
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Blackburn et al. (2000), among many others, have shown that the computed lift (after
sufficient transition time) exhibits quite large variability’ as in Fig. 9, and the wave
form exhibits interesting ‘double peaks’ as in Fig. 10, “likely to be related to the
shedding of four concentrated regions of vorticity per motion cycle,” as noted by
Blackburn et al. (2001).
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The immediate ramifications of the facts noted above are that (a) the response
amplitude given by Egs. (9a or 9b) becomes increasingly more approximate as the
amplitude and phase modulations increase; (b) the second order fluctuations affect
the frequency ratio [(Eq. (8)] and the amplitude [Eq. (9a)] differently, and (c) the
appearance of m* and { as m*¢ in Eq. (92) does not mean that m*{ is a universal
parameter of VIV for all ranges of m* and ¢ for a number of reasons. The parameter
m*{is based on a set of linear equations whereas the oscillafions are affected by the
start-up effects, history effects, and transitional second-order changes, separation
excursions, correlation length fluctuations, pressure distribution, to name just a few of
the govemning and influencing parameters. The imposed amplitude and frequency
drive the forced oscillations whereas the free oscillations are driven by the past and
the prevailing state of the motion and the forces arising from it. This is particularly
significant when transient phenomena take place at certain frequencies in both the
idealized experiments (at low Reynolds numbers) and in practical applications (pipes

and cables) at larger Revnolds numbers undergoing both in-line and transverse
vibrations.




The relative amplitude of the forced sinusoidal oscillations can be accurately
represented by

¥, =(A/ D)sin2xf, 1 (6-R)

where f.. is the driving frequency. However, the representation of the fluid-force
coefficient C, by a linearized equation, such as

C, =(C, cos@)sin(2rf, 1) + (C, sinp)cos(2m 1.0 (7b-R)

may be valid only for small A/D values for the following reasons. The so-called
Keulegan-Carpenter number K = 224/D for a cylinder subjected to oscillations
transverse to a uniform stream varies in the approximate range of 1.25 < K < 10.
Extensive investigations of sinusoidal flow about a cylinder (Sarpkaya, 1976a, 1977a,
b; 1986a, b) have shown that the drag and inertia coefficients in the MOJS equation
vary with both Re and K.  In the range of K values noted above, the variation of the
added mass coefficient is particularly strong for K larger than about 7. This is
primarily due to the changes in the structure of the wake on both sides of the cylinder.
In the case of a circular cylinder subjected to transverse oscillations there are
additional complications and major differences: the direction of the ambient flow
relative to the cylinder changes with time, the oscillations are in the cross-flow
direction but the ambient flow is normal to it and the wakes of the two cases are not
even similar. However, one can easily surmise that both the added mass and velocity-
square-dependent lift force are even more complex than that for the pure sinusoidal
oscillations in a fluid otherwise at rest. This has already been shown by Sarpkaya
(1978) in his forced oscillation experiments. The larger the amplitude of VIV
oscillations, the more nonlinear is the dependence of the lift and inertial Jorces on
A/D, particularly at mode changes, phase jumps, hysteresis, and intermitting
switching. In other words, Eqs. (6) and (7b) must be replaced by a nonlinear force
equation to enhance its accuracy if it is to be compared with self-excited vibrations.
The only such equation (other than the addition of higher order terms with either
arbitrary or Fourier-averaged coefficients) is Morison’s equation. It is easy to show
that it reduces to (Keulcgan aud Carpenter, 1958, Sarpkaya, 1977a)
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3n .
C, =Cd?lcosatl cosar —C, sin ax (13R)
The maximum force occurs at @ = 6,, where

6, = sin"[——4-—c—“J @10
3nC,

It is interesting to note that |C4/Co| must be larger than 4/37. Using Eq. (21) one can

determine the phase angle with respect to displacement, velocity, or acceleration.

As noted above, the relative amplitude of self-excited vibrations is not constant
and the motion is not a pure sinusoidal oscillation. Separation points, pressure
distributions and correlation lengths are history dependent and thus the instantaneous
states in forced and self-excited cases at the same amplitude and average frequency
do not necessarily give rise to instantaneous similar correlation lengths, pressure
distributions and sectional or total forces. The character of every cycle is determined
by the cumulative effect of the prevailing conditions (Basset effect) and by the
Schewe parameters. Every change in amplitude indicates a change in the lift force,
which in turn, is a reflection of a mismatch between the vortex shedding frequency
and the body frequency, leading to fluctuations in the shedding of vorticity. One can
find better force and amplitude representations by accounting for the additional
harmonics or by resigning to the use of time-averaged values. At present, there are
no analytical models that would suggest the form of the non-linearity likely to be
contributing to the dynamics of VIV, Thus, the amplitude needs to be represented
with sufficient accuracy through the use of one of the approximate methods such as
(a) the harmonic analysis; (b) proper orthogonal decomposition (POD, also known as
the Karhunen-Loéve decomposition) is an optimal expansion scheme to discretize a
random process (Loéve, 1977). It has been used, e.g., by Cazemier, (1997); Lenarts,
et al. (2001); Sarkar and paidoussis, (2003); Cohen et al. (2003); (c) force-state
mapping (Masri and Caughey, 1979; Meskell et al, 2001); or (d) complex
demodulation analysis in dealing with non-exact periodic series (Bloomfield, 2000).

Evangelinos and Karniadakis (1999) have successfully used the last method in
connection with their work on the VIV of a cable. If none of the above methods is

used, it is suggested that Fourier-averaged force-transfer coefficients be calculated




using sufficiently large number of oscillations (experimental or numerical) and
incorporated into Eq. (12) to create a model to predict the force as a function of time.
Such a force equation should produce, for similar normalized parameters, the lift and

phase, or the drag and the added-mass coefficients obtained from the forced
oscillations.

The question is not whether the two fairly idealized VIVs (forced and free, with
minimum Re larger than about 15,000) are exactly alike or not, but rather whether
they are sufficiently alike to extract reliable information from each for purposes of
comparison toward a physics-based understanding of VIV. The final decision
regarding the applicability of the fixed-body data to the prediction of the
characteristics of a freely oscillating body will depend on many more experiments

(forced and self-excited) with other rigid and flexible bodies at much higher Reynolds
numbers.

The comparison of the flow kinematics (often of DPIV pictures at low Re) of two
in-line constrained cylinders (one self-excited, one forced to oscillate) under highly
idealized circumstances (in-line constrained rigid cylinder, small L/D, better
correlation, small Re, uniform flow with relatively small turbulence) is far from
sufficient to draw scientific and/or industrially significant conclusions regarding the
dynamic similarity of self-excited and forced oscillations. The unconstrained rigid or
elastic bodies (long cables or pipes with varying degrees of bending and support
stiffness) often subjected to omni-directional waves, currents, and shear at much
higher Reynolds numbers present highly complex problems. What may be true for

the physics of the simplest cases may not at all hold true for the more realistic
circumstances.

9. Experiments with forced oscillations

Following the pioneering experiments of Bishop and Hassan (1964) with cylinders
subjected to forced oscillations in uniform flow, Protos et al. (1968), Toebes (1969),
Jones et al. (1969), Mercier (1973), Stansby (1976), Sarpkaya (1978, 1979), Chen and
Jendrzejczyk (1979), Staubli (1983). Moe and Wu (1990), Cheng and Maoretti (1991),
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Gopalkrishnan (1993), Moe et al. (1994), Sarpkaya (1995), Carberry (2002), and
Carberry et al. (2002) conducted experiments using forced oscillations.

Bishop and Hassan (1964) reported their lift and drag forces in arbitrary units and
assumed the added mass coefficient to be equal to its ideal value of C, =1. This
invalidated their force measurements and, for the same reason, those of Protos et al.
(1968) and Toebes (1969). However, Protos et al., and Toebes were the first to point
out the importance of the phase angle ¢ in the determination of the direction of the
power transfer between the fluid and the cylinder. Bishop and Hassan have identified
two critical frequencies (f;,m/ Js, = 0.86 and 0.95 at Re = 6000 and 4/D = 0.25)
delineating a hysteresis loop. The phase angle ¢ (between the displacement and the
excitation) started with a negative value and increased gradually to a positive value of
about 90° at the lower critical frequency. Then the motion became unstable and the
phase angle jumped from 90° to about 180°, with no intermediate values. However,
when f.om/f,; was increased, from the lower to higher values, the branch of o =170°-
degree was followed until the upper critical frequency was reached. Then the phase
angle changed abruptly by 180°. In other words, there was no gradual phase change
in the interval 0.86 < Jeom!fst < 0.95. Many years later, Krishnamoorthy et al. (2001)
noted, ... the phase switch does not occur abruptly. Instead, over several cycles of
cylinder oscillations, both ‘in-phase’ and ‘out-of-phase’ vortex shedding occur during
the transition.” Qur high-speed photographic recording (at a rate of 500 frames/s) of

the forced oscillations of smooth as well as roughened cylinders have shown that the
phase changes do in fact occur over several cycles.

Jones et al. (1969) forced a large cylinder to vibrate at small amplitudes, at very
large Re = 1.9x10”. Their lift coefficients were very similar to those reported at
relatively low Reynolds numbers. Mercier (1973) conducted forced in-line and
transverse oscillations in the range 4,000 < Re < 8,000 and reported a variety of
figures for mean and oscillatory drag coefficients as well as drag and inertia
components of the lift force, as functions of the reduced velocity and 4/D. Stansby
(1976) conducted forced vibration experiments with a circular cylinder, and he too

observed that the phase angle jumped about 180° in the lock-in range for decreasing
Jorm/fr and increasing 4/ The switch occurred at £,,./f,, = 0.86 (ac in the case of

Bishop and Hassan) at Re = 3,600 and 4/D = 0.25. Stansby associated his




observations with the wake width being greater for Jeom/fs: below critical, to being
smaller for f.om/f;: above critical.  This reduced the question to what makes the
relative wake width vary. Bearman and Currie (1979), working with a circular
cylinder at much higher Reynolds numbers (Re = 2.4 x 10%), reported no evidence of
hysteretic behavior.

Carberry (2002) and Carberry et al. (2002) subjected circular cylinders to
controlled sinusoidal oscillations transverse to a uniform flow at Re < 10* They
observed many of the well-known characteristics of the forces and transitions as the
frequency of oscillation passes through the Strouhal frequency. They have called
them a ‘transition’ between the “low- and high-frequency states” although the
frequency changes only slightly during the said transition. As noted earlier, it is a
“phase transition” where the ‘jump’ in phase could indeed be very large. Carberry
(2002), in an attempt to compare her data with those obtained previously, defined a
“transition frequency” f; at which sharp changes occur in the phase and amplitude of
the lift force. Obviously, £ differed from one data set to another. Thus, using f./f;
rather than f../f;:, she was able to bring into closer agreement the phase (@yz) and C,,
data of Mercier (1973), Sarpkaya (1978), Staubli (1983), Gopalkrishnan (1993), and
Carberry (2002), as shown in Fig. 11. All the data have been obtained at subcritical
Reynolds numbers, ranging from as low as 2,300 to as high as 6x10°, over the past 24
years. The Re values of Carberry (2002) are within the said range (Re = 2,300,
4,400, and 9,100), but her data exhibit notable differences from the mean of the others
even in a plot pulled closer by f./f,. This appears to be partly due to the fact that her
Reynolds numbers are considerably smaller than that required for the transition in the
free shear layers to mature and partly due to the fact that a 'transition frequency' f;
does not uniquely characterize a VIV event. Figure (12) shows Cryomer data of
Carberry et al. (2002) for a range of 4/D atRe = 2,300 and for a range of Re (2,300
—9,100) at 4/D = 0.5 as a function of f./f. Their additional data at 4/D = 0.25, 0.40,
and 0.60 depict equally large variations with Re and 4/D probably partly due to
amplitude and frequency modulations, and the increase of the instability in the free
shear layers with increasing Re, and partly due to the effects of a number of

secondary parameters noted earlier. Carberry et al. (2002) have also noted that small
differences in the motion ot the cylinder can result in significant changes in the
energy transfer.

51




P e — r ; 5.0 L S
ol ! 53
25F O O ] 45 ov 7
o3 ] aof Y AN
180F &V % 3 ; 80 3
®oo ] a5k 3
v 3 Y 1 ; amd o 3
9 135 f E ok - %o ]
] [ E .0 B 3
5 _f g R ; O 3
§ wf 1 o 2t fove o :
s asf ] 20f 500 3
< - [) 9 o 3
f 2 15F ? 3
or 3 3 3
: g 0 @00 050 1ok ) ;
L v [ O e
5k ZLK °s osf _ o9 :
3 \ 4 d 1
90 . . . . . 0.0 by : . .
050 075 1.00 125 150 175 200 050 075 100 125 150 175 200
Jelfs Jf:

Vv  Sarpkaya (1978, 1995)Re = 5,000 - 25,000 Carberry (2000)

o Gopalkrishnan (1993), Re = 10,000 ¥ . Re=9,100

¢ Mercier (1973), Re = 13,000 B Re=4400

O Staubli (1983), - Re=60,000 ® Re=2300

. Fig. 11. (a) and (b) show the phase angle (g5 ) and the lift coefficient C. in terms of
Je/fr Apparently, the data for Re less than about 10°~1.5x10° differ most from the rest
even in a plot pulled together by fo/f. This suggests that the average position of the
transition from a disturbed-laminar state to a turbulent state in the free shear layers has not
yet fully migrated upstream. (from Carberry, 2000).

Sarpkaya (1977a, b, 1978) carried out systematic measurements of forces acting
on a rigid cylinder vibrating sinusoidally transverse to a uniform water flow Re =
6x10° to 3.5x10%) and expressed the transverse-force coefficient in a manner
consistent with the force decomposition discussed earlier [see Eqgs. (14-15)]. For an
ambient velocity of U = U,cos @comt, 1t Was reduced to

C,==C.cosp and C,=C, sing (14-R)
and to,
p=tan”'(-C 4/ C)=tan™ (2§ 7{”‘—‘”%) (16-R)
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Fig. 12. shows that Crop, increases with A/D for a given Re, and with Re for a given 4/D in the
" range of Reynolds numbers used by Carberry et al. (2002) in their experiments (Carberry,
Sheridan, Rockwell, 2002).

Sarpkaya (1978) presented the inertia or added-mass coefficient (component of lift in
phase with the cylinder acceleration) and drag coefficient (component of lift in phase
with the cylinder velocity) for various values of 4/D in the range 6x10° < Re <
3.5x10°.  He then used the data in a linear equation of motion to predict the
amplitudes of oscillation of an elastically mounted self-excited cylinder. His
predictions were in good agreement with the experimental data of Griffin and
Koopmann (1977).

More recently, Sarpkaya (2003) repeated his 1978 experiments in a new water
tunnel (with no free surface) at seven Reynolds numbers (2.5x10%, 7.5x10°, 12.5x10°,
15x10°, 20x10°, and 45x10%) with two 50-mm diameter cylinders with L/D = 7 and
A/D = 0.50 (using a fast data acquisition system and an ‘infinitely better’ computer

rather than several hundred punch cards for every data point as during 1975 to 78
period. One of the cylinders was polished to make it as smooth as possible and the

other was specially modified for the exploration of VIV suppression. The velocity at
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the test section (356 mm x 510 mm) ranged from 0.04 m/s to 0.92 m/s and the
ambient turbulence at the lowest Re was 0.8% and at the highest Re was 1.2%,

Experiments for each Reynolds number were repeated at different weeks. The
objectives of the rather ambitious program were: (a) to obtain reliable data at
Reynolds numbers higher than that encountered in the 1978 experiments; and, more
importantly, (b) to determine the dependence of the key quantifiable parameters
(phase angle and the in-phase and out-of phase components of the transverse force)
on the Reynolds number at discrete values of Re in the range 2.5x10° < Re < 45x10°
using the same facility, experimental procedures, and test cylinder. Only the most
important findings will be described in this review. The results and their detailed
discussion will appear elsewhere (Sarpkaya, 2003).

We will first describe the results for Re = 45x10°. The mean lines passing
through the new C,, C,, and phase data for 4/D = 0.5 for Re = 45x10° are shown in
Figs. 13 and 14 as a function of Je/fs and V,, respectively. The C,, C, and ¢ data
obtained at different weeks fell within respective error bands of 4%. These figures
substantiate many of the observations made earlier by Sarpkaya (1978, 1979, 1995)
and others since then (eg, Staubli, 1983; Gopalkrishnan, 1993). Evidently,
important variations occur in both Ca and Cy in the range 0.80 < Jo/ft < 0.90 and the
positive values of C, are the regions of primary and secondary synchronizations,
which signify power transfer Jrom the fluid to the cylinder.

The phase angle decreases rapidly from a value of about 180° to little above zero
at fe/fe~ 1.5. In addition, important variations occur in all three parameters outside
the primary f£,./f, range noted above. F igure 14 shows the same data as a function of
V: = U/Dfex where, for a given U and D, the forcing frequency decreases along the V,
axis but the Reynolds number remains constant at Re = 45x10°. The data reveals
that C, decreases sharply from about 3.9 to about -0.6, as the reduced velocity
increases from V; ~ 3.5 to 5.90. C. then rises slowly to about —0.4 as V., increases
toward 10. This phenomenon occurs for a wide range of A/D values with different C,
values (see, Sarpkaya, 1978). The changes in C, may be interpreted in a number of
interesting ways using Egs. (3d) or (3e), i.e., (1 + Co/m*) = (f0/ fur)* or the virtual
mass = (m"+ Ca) =m (f.a/fux)®. The decrease of C, from large positive values
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Fig. 13. Inertia and drag coefficients
(or the in-phase and out-of phase
components of the lift force) and the
phase angle as a function of f£./f,
(4D = 0.50, Re = 45,000, L/D = 7,
smooth cylinder) (from author’s
experiments). Perfect synchroni-
zation is seen to occur at f./f =
0.85, accompanied by rapid changes
in phase and force-transfer coeffi-
cients. (Sarpkaya, 2003).

Fig. 14. Inertia and drag coefficients
(or the in-phase and out-of phase
components of the lift force) and the
phase angle as a function of ¥, =
UfaD (A/D = 0.50, Re = 45,000,
LD = 7, smooth cylinder) (from
author’s experiments). Perfect
synchronization is seen to occur at
V, = 5.80-5.85, accompanied by
rapid changes in phase and force-
transfer coefficients (same as Fig. 13
except that the horizontal axis is
changed to V}).




toward zero, as ¥, approaches 5.85, shows that Jex is rising toward f£;,. (i.e., the virtual
mass of the body is decreasing). At Jralfex =1, Ca=0, ¥, = 5.85 and the virtual mass
of the body becomes equal to the actual mass of the body. Subsequently, C, becomes
negative and acquires its minimum value of about —0.6 (for 4/D = 0.5) at about V, =
5.90. At that point, the body’s apparent mass is the smallest it will ever be and £, is
the largest it will ever get for this particular amplitude (4/D = 0.5). In short, £,

increases up to about ¥, = 5.90 and then decreases gradually while remaining larger
than f,,..

Figure 14 also shows that the drag coefficient C, (the normalized out-of-phase
component of the total instantaneous transverse force) rises sharply for ¥, values from
about 5 t0 5.90, i.e., the drag is in phase with the direction of motion of the cylinder
and helps to magnify the oscillations (positive energy transfer). It is positive also in
the ranges 3.2 < V,< 4.4 and 5.90 < V,<10. The foregoing substantiates the fact
already noted by Sarpkaya (1978) that “synchronization or lock-in is manifested by a
rapid decrease in inertial force and a rapid increase in the absolute value of the drag
force” and that “lock-in is a phase transformer.” Sarpkaya (1978) further noted that
“The data also show that the use of an inertia or added-mass coefficient equal to
unity, as determined by oscillating the cylinder in a fluid otherwise at rest, is not
correct for modeling the vortex-induced oscillations.” Obviously, this fact has
nothing to do with the shifting of the ideal added mass to the left side of the equation
of motion and dealing only with the so-called ‘vortex-induced forces,’ as long as the
actual added mass (Am), and not its ideal value, is used in calculating the prevailing
body frequency, i.e., f,, = (1727)(k/(m+Am)'2, Clearly, high m" values diminish the
contribution of C,/m" or Am/m to the virtual mass. Conversely, very small values of
m’ magnify the contribution of C,/m’ (for positive values of C,) and lead to lock-in at
very small excitation frequencies, as per Eq. (3d). Furthermore, the range of
synchronization increases because the variation of Jac/fex With respect to C./m’

decreases according to (1 + Co/m"y'"* and Jvac/fex loses its ability to delineate sharper
frequency boundaries.

It has been noted a number of times that the added mass coefficient C, can be
negative with far reaching consequences for freely-vibrating cylinders. At first it
appears paradoxical. However, further thought shows that Ca is the cycle-averaged
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value of the sum of the masses transported during the periods of acceleration
(cylinder moving toward the mean position, i.e., y — 0) and deceleration (cylinder
moving toward its maximum amplitude, i.e., y — |4]). Thus, (cycle-averaged)
negative added mass means that the drift mass during the deceleration periods is
larger than that during the acceleration periods. The basic difference between the
kinematics of the two cases is that during the deceleration periods, the velocity vector
relative to the cylinder is oriented toward the axis of the wake, whereas during the
periods of acceleration the said net velocity is toward the shear layer from which the
cylinder is coming. Undoubtedly, this is a consequence of the particular behavior of
the wake vortices during the said periods and the forces they exert on the cylinder
(awaiting for a Direct Numerical Simulation of VIV at high Reynolds numbers, say
Re > 15,000). Similar “negative” added mass has been previously discussed by
Keulegan and Carpenter 1958) and by Sarpkaya (1976a, b) in connection with the
sinusoidal motion of flow relative to smooth and roughened cylinders. Subsequently,
it has been discussed by numerous investigators (see, e.g., Vandiver, 1993;
Gopalkrishnan 1993; Vikestad et al. 2000). According to Vandiver (1993), “a
negative added mass simply reflects the sign of the fluid force on the cylinder being
in phase with the acceleration.” In self-excited oscillations, the occurrence of
amplitude and frequency modulations is accompanied by corresponding changes in
the added mass. For example, a change of A( f,q./ f;om) leads to a change of A(C,/m")

= 2( froac/ foom) A(frao/ foom), Which could be very large when f. is relatively small as
in the case of small m".

The second objective of our experiments was to determine the dependence of the
phase angle and the in-phase and out-of phase components of the transverse force on
the Reynolds number at seven discrete values of Re in the range 2.5x10% < Re <
45x10°, using the same facility, experimental procedures, and test cylinder. This was
prompted by the well-known fact that the Gerrard-Bloor transition waves in the free
shear layers disappear in the range of Reynolds numbers from about Re = 2x10* to
5x10% in steady flow about a stationary cylinder. Bloor (1964) measured the
frequency of transition waves within 1.3x10° < Re < 4.5x10* (see also, Bloor and
Gerrard, 1966; Gerrard, 1978, Wei and Smith, 1986; Unal and Rockwell, 1988:
Ahmed and Wagner, 2003; Zdravkovich, 1997, 2003; Norberg, 2003). When the
Reynolds number reaches about 2x10* the near wake becomes highly three-
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dimensional, and the eddy formation length does not move closer to the separation
point. Unfortunately, there are no comparable direct observations and measurements
with cylinders subjected to VIV. Thus, the critical value of Re at which the cycle
averaged eddy formation length remains nearly stationary is not yet known.
Furthermore, direct measurements to gather such data appear to be prohibitively
difficult. Owing to these facts, we have chosen the three parameters noted above (C,,
Ca, @) to deduce indirect information about the effect of the evolution of the unsteady
free shear layers, knowing fully well that the variations observed from one Re to
another at the same A/D are not exclusively due to the variations in the shear layers.
However, it is not too difficult to assume that the shear layers will certainly have a

predominant effect on what happens to the generation of vorticity, shedding of
vortices, phase angle and the force components.

The data obtained at different weeks at each Reynolds number were compared
with each other as well as with those at consecutive Reynolds numbers (2.5x10°,
7.5x10%, 12.5x10°, 15x10°, 20x10°, and 45x10°, all with A/D = 0.5). For smaller
values of Re (2.5x10° and 7.5x10%), the differences between the force coefficients
were indeed as large as those encountered by Carberry et al. (2002) with /D = 0.5
and Re = 2.3x10°, 4.4x10°, and 9.1x10° as shown in Fig. 12. However, when the
Reynolds number was increased to 12.5x10%, the variations in data relative to Re =
7.5x10° became smaller but certainly larger than the usual scatter in the data. The
phase angle exhibited the largest difference, particularly for f../f, > 0.9. When Re
was increased to 15x10° and then to 20x10°, the differences between the tracing
parameters reduced to the level of the scatter observed in each experiment. The
comparison of the data for Re = 20x10° and Re = 45x10° confirmed the conclusion
that all three 'identification parameters' stabilize and do not materially depend on the
Reynolds number, at least in the range 15x10° < Re < 45x10°. It is tempting to
assume that this conclusion will remain true for all Re in the lower subcritical range
of Reynolds numbers for smooth uniform flows about smooth circular cylinders, at

least for A/D = 0.5, Obviously, experiments at larger A/D values and Reynolds
numbers are desirable.

Staubli (1983) measured the fluid forces acting on a transversely oscillating
circular cylinder in a towing tank. His work was essentially similar to that of




.

Sarpkaya (1978), but at a higher Reynolds number (Re ~ 60,000). Staubli predicted

the vibrations of a freely oscillating cylinder (by Feng, 1968) using the results of his
measurements. In general, he found good agreement with the experimental data. He
has shown that hysteresis effects, which are observed in experiments with elastically
mounted cylinders of certain damping and mass ratios, are caused by the nonlinear
relation between the fluid force and the amplitude of oscillation. Staubli did not
present drag and inertia coefficients. However, they can be derived from his lift force
and phase data and vice versa as shown in the present paper.

Moe and Wu (1990) have undertaken a major effort to conduct both free and
forced oscillation experiments using the same apparatus. The cylinders were
suspended such that they were (a) free in both the in-line and transverse directions;
(b) clamped in the in-line direction, free in the transverse direction; (c) clamped in-
line, forced in the transverse direction; and (d) free in the in-line direction and forced
to vibrate in the transverse direction. Moe and Wu (1990) have obtained a number of
important results: (1) the use of the true or prevailing oscillation frequency (our f.om)
results in very similar lock-in ranges for both the forced and free oscillations; (2)
large self-excited cross-flow motions occur for a wider range of the reduced velocity
if the cylinders are free to execute figure-eight motions than if they are restrained in
the in-line direction; (3) the lift force is irregular for all test cases, and most so for the
self-excited case; and (4) relatively large random effects exist in the lift force of the
cylinder undergoing self-excited or forced vibrations as seen in Figs. 9(a) and (b).

These effects are stronger for the in-line fixed cases than for the in-line spring-
supported ones.

Gopalkrishnan (1993) carried out forced oscillation experiments in a towing tank
(Re = 10%) and produced extensive plots of the lift force and phase. He measured the
reaction force only at one end of the test cylinder (suspended at both ends) but
performed the data reduction by assuming a uniformly distributed load. Thus, the
effects of three-dimensional conditions (e.g., the spanwise variations of the flow) in a
nominally two-dimensional flow were not accounted for. His data, as well as those
obtained by Sarpkaya (1978) and Moe and Wu (1990), were compared by Sarpkaya
(1995) by plotting the in-phase and out-of-phase components of the lift force (for A/D
=0.25, 0.50, and 0.75) as a function of Vy St = (UIDfXfss D/U) = fi: /£, in order to
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account for the variations in Strouhal number (and the Reynolds number) among the
three experiments. The level of agreement between the three sets of data suggested

Blevins (1999) that the drag and inertia coefficients obtained by Mercier (1973),
Sarpkaya (1978), Staubli (1983), Wu (1989), Deep Oil Technology (1992), and
Gopalkrishnan (1993) may be combined in a single database and represented with
semi-empirical correlations for design purposes only.

The test cylinders in the experiments noted above were constrained to remain in
the transverse plane. As noted earlier, Moe and Wu (1990) carried out additional, but
limited, tests with cylinders not-constrained in the in-line direction (using suitable
springs). Interestingly enough, the random variations in the lift force turned out to be
smaller for the in-line-unrestrained cases than for the in-line-restrained cases.
Clearly, the data obtained with in-line-restrained rigid cylinders may be of limited use
under certain circumstances, particularly when the natural frequency of the cylinder
in the in-line direction is made or becomes increasingly larger than that in the
transverse direction. Thus, the exploration of the biharmonic motion of a cylinder
elastically-supported in both directions becomes an issue even more important than
that of an in-line restrained cylinder subjected to amplitude-modulated beating
motions. Gopalkrishnan, et al. (1992) subjected rigid cylinders, restrained in the in-
line direction, to amplitude modulated (beating) motions and expressed the transverse
force in terms of an "equivalent lift coefficient."

Sarpkaya (1995) discussed the significance of two-directional or biharmonic
oscillations (in both the in-line and transverse directions) in light of experiments
undertaken for that purpose, to simulate more closely the true nature of flow-induced
vibrations. His data, reproduced here as Fig. 15, have shown that the variation of 4/D
with V, for the case of 'in-line free' oscillations (i.e., with identical natural
frequencies and identical oscillating masses in each of the X and Y directions) yields
about 20% larger amplitudes over a 20% larger V,St = £,/f,, range for a Reynolds
number of about 35x10°, Obviously, the increase in A/D is not 'a slight increase’,
contrary to the unfortunate misinterpretation of our data by Jauvtis and Williamson
(2002). The fact of the matter is that VIV depends on a large number of parameters
which include m* as well as the Reynolds number. The variations of 4/D for other
natural frequency ratios (in-line versus transverse) are considerably more complex,
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indicating dramatic changes in the wake. Moe and Wu (1990) have noted that the
separation points and pressure distribution are strongly affected by the previous
history of the motion and the average forces differ from the forces at the average
amplitude due to the strong non- linearity of the in-phase and out-of phase
components of the transverse force. Jong and Vandiver (1985) and, subsequently,
Vandiver and Jong (1987) studied the identification of the quadratic system relating
cross-flow and in-line vortex-induced vibrations and the relationship between the in-
line and cross-flow vortex-induced oscillations of cylinders. They have concluded
that a strong quadratic relationship exists between the in-line and cross-flow motions
under both lock-in and non-lock-in conditions and that the well-known frequency

doubling phenomena in the in-line response is a consequence of such a quadratic
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correlation. In other words, the motions in two directions are not independent of each
other. Only, Jauvtis and Williamson (2002), while experimenting with a cylinder
(with the same in-line and transverse natural frequency of 0.4 Hz) in two-degrees of
freedom, in the range of small Reynolds numbers (1,000 < Re < 6,000), found that
“the freedom to oscillate in-line with the flow affects the transverse vibration
surprisingly little” and arrived at the far reaching conclusion that the studies of the
past (presumably at lower Reynolds numbers) on bodies “restrained to move only
laterally to the fluid flow remain relevant and valid for the problem of VIV of a body
in two-degrees of freedom.” In other words, no ‘dramatic changes’ should be
expected in the vortex shedding, forces, and responses of bodies free to vibrate in
both the in-line and transverse directions relative to the responses of those restrained
to vibrate only in the cross-flow direction. Their results and conclusions should be
restricted to the range of Re < 6,000, and certainly not generalized to Reynolds
numbers larger than about 15x10° to 20x10°, for reasons noted earlier. In direct
contradiction of Jauvtis and Williamson (2002), Marcollo and Hinwood (2002) found,
in connection with their work on ‘the cross-flow and in-line responses of a long
flexible cylinder subjected to uniform flow,” that “The in-line vibration is found to
have a strong dependency on the cross-flow vibration and is forced at frequencies
very different to that which would be predicted a priori” It is obvious from the
foregoing and from a more careful perusal of our data shown in Fig. 15 that the
interaction of cross flow and in-line oscillations leads to substantially different results
from those found at very small Reynolds numbers. 1t is also obvious that the
conclusions derived from 'small Re-VIV' experiments should be confined to small
Reynolds numbers. As we shall discuss later, both the laboratory [e.g., Triantafyllou

et al. (2003) at Re = 30,000] and the field data at large Reynolds numbers are in
conformity with our findings.

10. The wake and the VIV

The most appropriate place for a brief review of the structures in the wake of a
body undergoing VIV at relatively low Reynolds numbers appeared to be between the
discussions of the forced and self-excited oscillations.  Enormous progress in
computers, and in flow visualization and measurement devices led to the description
and classification of the wake states of the simplest bodies, albeit at relatively small
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Reynolds numbers, and reduced the fundamental questions of VIV from: (a) under
what circumstances do the various types of VIV occur; and (b) what are the
controlling and influencing parameters in all ranges of m'¢; to: (1) why do the
vortices in the wake shed as two vortex pairs per cycle under certain conditions and
as two single vortices in a cycle (as Karman vortices) under other circumstances; and
(2) what is the role of vortices in the cause and effect relationship between their

motion, hysteresis, and the controlling and influencing parameters?

Angrilli, Di Silvio, and Zanardo (1972) pioneered a number of experiments to
establish a relationship between the vortex shedding and the cylinder displacement.
They were the first to introduce the concept of ‘time of vortex origin’ and to suggest
that VIV should be called a ‘self-controlled’ or ‘self-regulated’ phenomenon rather
than a ‘self-excited’ one since the alternating lift force is not initiated and maintained
by the body motion to exist or to persist like galloping. Figure 16 shows the
successive positions of the vortices from photographs. Angrilli et al. (1972) have
found that “as long as the oscillation is small, as in Fig. 16(a), vortex trails are not
very different from those produced by a stationary bluff body, but for larger
oscillations, as in Figs. 16(a)-(b), the two vortex trajectories must cross each other

twice to reach a stable configuration in the wake.”
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Zdravkovich (1982, see also 1990, 1996) was the first to compare the flow
visualizations of others about circular cylinders subjected to forced or free vibrations,
He suggested that the phase change (about 7) in the unsteady lift force near
synchronization is connected to a switch in the timing of vortex shedding. This has
subsequently been confirmed by Gu et al. (1994) at a rel atively low amplitude (4/D =
0.2) and by Lu and Dalton (1996) through numerical simulations (Fig. 17). Based on
the flow visualization studies of Den Hartog (1934), Meier-Windhorst (1939),
Angrilli, et al. (1972), Griffin and Ramberg (1974), Zdravkovich (1982) pointed out
that two modes of drastically different vortex shedding occur in the lock-in range. At
the beginning of the said range, the vortex formed on one side of the cylinder is shed
when the cylinder is near the maximum displacement on the opposite side. However,
toward the end of the lock-in range, the vortex is shed when the cylinder is near its
maximum displacement on the same side. Zdravkovich (1982) also observed that the
limit between these two modes is at the reduced velocity at which the maximum
amplitude occurs. Ongéren and Rockwell (19882, b), using hydrogen bubbles and
hot film, have observed finer details of the vortical structures on either side of the
phase shift of 7.

/=000 . .
e Fig. 17. Instantaneous streamlines

(left) and vorticity contours (right) for
various fo./f;, (4/D = 04, Re = 1000).
In all cases, the location of the cylin-
der is at its extreme upper position.
At fo/fi = 0.95, a new vortex is being
shed from the upper surface. How-
S ever,at fo/f, = 1.0, the shedding has
11| switched to the lower surface (Lu and
Dalton,1996).




Williamson and Roshko (1988, hereafter referred to as WR) addressed the
questions “Why does the vortex formation change its character through
synchronization, and why does it change so suddenly at a critical wavelength?” They
have moved a vertical cylinder along a sinusoidal path (300 < Re < 1000) in a fluid
otherwise at rest and photographed the path of suspended aluminum particles on the
free surface of the tank. They asserted that the dynamics of the vortices in the near
wake is basically inviscid over the said Reynolds number range. As noted earlier, the
shear layers could not have yet developed instabilities in the said Re range toward
transition and turbulence. Thus, the observations may not be relevant to higher
Reynolds rnumbers.  Furthermore, the surfactants (suspended, non-dissolvable
aluminum particles) are known to affect strongly the position and strength of vortices
and vorticity distribution at and near the free surface, particularly at small Reynolds
numbers (see, Sarpkaya, 1996b). They have mentioned that the aluminum-particle
technique “has been used in conjunction with a dye method beneath the surface to
show that the vortex patterns are similar.” However, the results of the dye technique
have never been reported.

WR (1988) described, in the range (300 < Re < 1000), the emergence of various
regimes (see Fig. 18) in a map of 4/D versus f,/f.. (as well as VD= U/£..D), where A
is the wavelength. For U/fD (or fu/fy ) larger than a critical value, the wake
manifests itself as long attached shear layers. Two counter-rotating vortex pairs are
shed per cycle in the so-called 2P mode, as shown in Fig. 19(a), (from Brika and
Laneville, 1993). The 2P mode is associated with the splitting of a region of vorticity
in each half-cycle. The DPIV measurements of GW (2001) have shown that the
vortices of the 2P mode “convect laterally outwards from the wake centerline,
causing a downstream oriented jet type flow close to the cylinder, which in tum
results in a ‘double-wake’ type velocity profile.” The 2S mode, depicted in Fig.
19(b), represents the alternate shedding of vortices in the classical Karman mode.
Figure 20 is a plot by KW (1999) of their data (Re ~ 3,700) on the map shown in Fig.
18 showing that the lower-branch regime (see Figs. 2(b) and (c) for definitions)
collapses well when plotted against f£;,/%...

The region delineated by 0 < 4/D < 0.8 and 0.40 < £./f,, < 1.80 in Fig. 18 has
been replotted in Fig. 21b in terms of increasing the excitation frequency to relate the
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“Fig. 18-(above). Map of vortex synchroni- .

zation patterns near the fundamental lock-in
region. The critical curve marks the transi-
tion from one mode of vortex shedding to
another (Williamson and Roshko, 1988).

Fig. 19-(right) Photographs and sketches
showing the two near-wake patterns respon-
sible for the hysteresis loop (Vs = 0.93, Re
= 7350). (a) 2P mode (4/D = 0.40); (b) 28
mode (4/D = 0.27). Both photographs are
taken at maximum negative displacement of
the cylinder (Brika and Laneville, 1993).
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Fig. 20-(left). A4/D for Re = 3700 and two m*
values plotted in the Williamson-Roshko (1983)
map. Circles, m* = 1.19 and (m*+C4) = 0.011;
triangles, m*=8.63 and (m*+C4)=0.0145. Solid
symbols indicate the lower-branch regimes

(Khalak & Williamson, 1999; and Govardhan &
Williamson, 2000).
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3 ] various modes relative to the changes in
hasel | 2 the added mass, the out-of-phase
g 2 // . component of the force, and the phase
§ / : angle in our data [see Figs. 14 and
é ] 21(a)], notwithstanding the large
S 1 differences between the Reynolds
§ || leld ¥R: %,% numbers of WR (1988): (300 < Re <

\ 1,000), and ours: Re = 45,000.

@ | AI_,D = 0.50

o4 06 o8 10 1z 14 15 14 Near the left boundary of the 2P
as , e mode, in the WR map, the out-of-phase
y ".‘ ﬂ?:,, "‘;}“" component of the lift force (energy input
S “.\ £ o s modie i to the cylinder) is small and the phase
os —2P ,," T Cosescence ™ angle is large (about 7) as seen in Fig.
“"m';;ﬁif;:ée;\ | /,/ the near wake 2la. As one approaches the critical
L wake pattem \ —* curve along a constant A/D line (say,
A I "R 0.5), the phase angle decreases rapidly,
Jedli the out-of-phase component of the lift
Fig. 21. Top half: Sarpkaya’s data shown in Fig. ~ increases towards its maximum (ie,

13, Re = 45,000; bottom half: a replot of  more energy transfer from the fluid to
Williamson-Roshko (1988) map, Re = 300-1000. the cylinder), and the added mass coeffi-
cient approaches its minimum value
while remaining negative (i.e., the virtual mass of the oscillating system achieves its
minimum value for the specific amplitude). On the critical curve, the 2P mode
changes rather abruptly to the 2S mode, shown in Fig. 21(b), but only for 4/D values
smaller than about 0.75. The 2S mode is characterized by the shedding of a single
vortex in each half cycle, like Karman vortex shedding, and by rapid increases in
Cising, phase angle and the added mass coefficient. In fact, the well-known re-
circulation bubble of the mean velocity field of the wake of a stationary cylinder
manifests its presence in the 2S mode, showing that the 2S-mode of shedding,
coupled with the cylinder motion, may lead to even more dynamic and organized mo-
tion. In particular, the coefficient of lift, enhanced by improved correlation, becomes
even larger than that for a fixed circular cylinder in steady flow, emphasizing the fact
that the use of all active and passive means to prevent the wake from shifting to the
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28 mode is most desirable for all practical purposes. The rate at which the velocity
step is increased changes the vorticity generated on the cylinder boundary. The
increased vortex strength might precipitate an earlier hysteretic jump in A/D. For
small increments, the vorticity generated is small and diffuses faster without making
an impact on the strength of vortices or on the energy transferred to the cylinder.
The critical value of f,.//, is an important example. For A/D = 0.50, it is seen to be
about 0.85 in Figs. 14 and 21. According to Carberry et al. (2002), the transition oc-
curs in the range of £../f;; = 0.84 — 0.87 (for Re = 2,300). However, according to WR
(1988), the critical value is at £,./f; ~ 0.94 for A/D = 0.50, as seen in Figs. 18 and 21b.
The difference between this value and those noted above may be due to the use of
relatively low Reynolds numbers (300<Re<1000), as noted above. Even though in
the said Re range, and up to about Re = 10°, the Strouhal number for a stationary
cylinder remains nearly constant, the all-the-more important shear layer transition to
turbulence for VIV (coherence length and separation angle) occurs at Reynolds
number well above 10°, Apparently, on the basis of what has been said so far, the
critical line in Fig. 21 must be shifted to the left (to the right in the original plot of
WR, Figs. 18 and 20) by an amount A(fedfs) = 0.10 at the level of A/D = 0.5. Other
values of 4/D and Re may require different amounts of shift This will improve the
agreement between their map and the data by Brika and Laneville (1993); KW
(1999); and GW (2000). F inally, it is worth noting that accurate numerical solutions
at relatively low Reynolds number (e.g., Blackburn and Henderson 1999 at Re = 500)
do not find the 2P mode. Evangelinos and Karniadakis (1999) at Re = 1,000 found
multiple vorticity concentrations and transient mixtures of (P+S) and 2P modes in the
near wake and general wake instability further downstream. The repeat of the WR

(1988) experiments in a closed system at Reynolds numbers larger than 1.5x10%,
without the use of surfactants, is most desirable.

Rodriguez and Pruvost (2000) used a vertical tank, a slightly heated metal
cylinder, spanning the width of the test section, and the schileren technique (based on
variations of the liquid refraction index with temperature). Experiments were
conducted at a Reynolds number of 700, at eight different amplitudes ranging from
AD=0125t0 A/D=1. The vortex-shedding phase was defined with respect to the
cylinder position y/4 at the time of shedding. A vortex is considered shed when it is
cut from its feeding sheet in a manner similar to that introduced by Sarpkaya and



Shoaff (1979) in their discrete vortex simulation of flow-induced vibrations.
Rodriguez and Pruvost (2000) spanned the synchronization region by varying the
cylinder oscillation frequency (f..) in small steps while holding the amplitude 4/D

constant at one of the desired values. They have measured the prevailing vortex

shedding frequency in the wake f,, as previously done by Cheng and Moretti (1991).

They have presented extensive data and photographs (see Fig. 22) for a large number

of subharmonics. Their methods of identifying the various phenomena and their use
of significantly different notations (e.g., L and U for the vortices shed from the lower
and upper sides of the cylinder) made their results somewhat difficult to interpret.

Nevertheless, Rodriguez and Pruvost (2000) have substantiated the fact previously
noted by Blevins (1990) that the maximum lift coincides with the shedding of the L-

vortices and the minimum lift with that
of the U-vortices.
shedding of an L-vortex causes the

This is because the

separation point on the upper surface to
This,
accelerates the flow on the top surface

move downstream. in tumn,
and increases the lift. Rodriguez and
Pruvost (2000) have also noted that the
motion of a cable (their primary
objective) is directly related to the nature
of the coupling of the numerous
synchronization ranges and therefore it
is important to assess whether such
coupling can occur in the range of 0 <
AD < 1 and, how and when the
transition from one mode to another
occurs if the velocity in the far-field
varies with time.

It has been known since the 1960’s
that the transition, the wake states on
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either side of the transition, and the way in which they occur depend on the governing
parameters and the Schewe parameters given by Egs. (2) and (17). The singling out
of a frame or two in the high- or low-phase regions of the oscillation is not too
meaningful because the inertial forces called into action prevent an abrupt rupture of
the prevailing conditions where there can be almost seamlessly incremental
transitions from cycle to cycle. As noted earlier, Krishnamoorthy et al. (2001) have
observed that “the phase switch does not occur abruptly. Instead, over several cycles
of cylinder oscillations, both ‘in-phase’ and ‘out-of-phase’ vortex shedding occur
during the transition.” Other works dealing with the comparison of the wake states of

free and forced oscillations is deferred to the next section for reasons which will
become clear later.

11. Self-excited vibrations

Numerous contributions have been made toward the understanding of the
kinematics and dynamics of self-excited vibrations of mostly circular cylinders:
Marris and Brown (1963), Vickery and Watkins (1964); Koopmann (1967b); Feng
(1968); Di Silvio (1969); Gowda (1975); Angrilli, Di Silvio, and Zanardo (1972);
Griffin (1972); Griffin and Ramberg (1974); Di Silvio, Angrilli, and Zanardo (1975);
Stansby (1976); Griffin and Koopmann (1977); Dean, Milligan, and Wooton (1977),
Zdravkovich (1982, 1990, 1996); Williamson and Roshko (1988);, Brika and
Laneville (1993); Vandiver (1993);, Moe, et al. (1994); Skop and Balasubramanian
(1997); Hover, Miller, and Triantafyllou (1997); Hover, Techet and Triantafyllou
(1998); Atsavapranee, Benaroya, and Wei (1998); Zhou, So and Lam (1999); Khalak
and Williamson (1999); Govardhan and Williamson (2000); Pesce and Fujarra
(2000); Lagué and Laneville (2002), Voorhees and Wei (2002); and on numerical
simulations of long flexible cables by Newman and Karniadakis (1997); Bartran et al.
(1999); Evangelinos and Karniadakis (1999); Triantafyllou, Davis, Hover, Landolt
(2001); Triantafyllou, Techet, Hover, Yue (2003). Here only a few of these
contributions will be discussed in some detail.

As noted earlier, the most interesting phenomena in VIV are hysteresis and lock-
inlock-out. For a given system, the occurrence of hysteresis depends on the
approach to the resonance range-the rate of change of the velocity (with small or
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F

~ large increments or decrements) from a low or from a high velocity. The jump

condition (double amplitude response) originates in the fluid system, and not, as once
thought, in the cylinder elastic system.

Marris and Brown (1963) were interested with the elastic response of Pitot tubes
under normal operating conditions. Each tube was cantilevered (in its plane of
motion) to one of the walls of a water channel and subjected to uniform flow in the
range (1000 < Re < 2000). Marris and Brown were able to change the length of the
tube and hence its frequency. They have determined two lengths (and hence two
frequencies) one of which was 35% larger than J« and the other, about 35% lower
than f;.. Thus, they were able to bracket the synchronization range of the tubes. To
the best of our knowledge, no one has ever varied the frequency of the test beam by
changing its length (and, of course, mass and damping ratios), except in industrial
applications to avoid synchronization.

Feng (1968), inspired by Parkinson (1974, 1989), made one of the widely known
contributions to VIV. Experiments were carried out in a wind tunnel with a single-
degree-of freedom flexible cylinder with m” = 248, £ =0.00103 and m’¢ = 0.255, as
shown in Figs. 1 and 2. Feng measured £, f;;, 4/D, and the phase angle ¢ for three
types of experiments: (a) the cylinder started from rest at a prescribed velocity U, (b)
the velocity was increased by small increments while the cylinder was oscillating at a
steady-state amplitude; and (c) the velocity was decreased by small increments while
the cylinder oscillated at a steady-state amplitude. His phase and A/D data were
presented as a function of V, = U/f,.D. For the first type of experiments, F eng found
that for V; less than about 5, 4/D is very small (the inception phase of oscillations)
and the frequency of excitation of the cylinder, Jexis smaller than f;, and f,,. For V,
larger than about 5, f,, and f.. became one and the same or, what we prefer to call, the
common frequency f;om, i.¢., the lock-in occurred. The amplitude smoothly rose to a
maximum value of 4/D = 0.32 at about V,= 6. However, at V, ~ 7, lock-out occurred,
i.e., the vortices returned to their Strouhal relationship and the cylinder, to a
frequency very close to f.,, and, with further increases in velocity, the amplitude
dropped to negligible values near V, = 8.6.

For the second type experiments (velocity increased by small increments while
the cylinder was oscillating), the amplitude reached a much higher value (4/D =0.53)
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at about the same V, (~ 6) where the maximum of (4/D = 0.32) occurred in the
previous case. However, when ¥, reached a value of about 6.4, A/D dropped sharply
to the value that was reached from rest at the same wind speed. This drop was
accompanied by a change of about 35° in phase and, most certainly, by a change in
the wake structure. When the speed was decreased, the amplitude data followed the
‘steady flow’ case up to a special ¥, value of 5.9 at which a second ‘smaller’ jump
back to the higher values occurred. This resulted in a clockwise oscillation hysteresis
loop, as shown in Fig, 1. This jump was accompanied by a phase change of about 60°

and a counter-clockwise Phase-hysteresis loop, signaling very interesting changes in
the shedding mode of vortices.

There are a number of similarities as well as differences (e.g., the synchronization
and hysteresis covered by the velocity range, jumps in the phase) between the data
obtained by Bishop and Hassan (1964), Feng (1968), and Brika and Laneville (1993),
and for a flexible cylinder by Wu (1989), Saltara et al. (1998), and Pesce and Fujarra
(2000), probably due to the differences in 4/D, Re, m’, ¢ the test bodies (cable and
rigid cylinders), and the Schewe parameters.

Brika and Laneville (1993, hereafter referred to as BL) performed a series of very
thorough and well-documented experiments in a wind tunnel with a Sexible circular
tube (m” = 2,054) in the range of relatively low Reynolds numbers (from 3.4x10° to
11.8x10%) and small damping ratios (from ¢ = 0.83x10™ for small amplitudes to { =
2x10™ for higher amplitudes, up to a maximum of A/D = 0.52). A flexible cylinder
was to simulate half of the wavelength of a vibrating cable and to eliminate the end
effects. BL (1993) have performed tests in two regimes: PR: the * progressive regime’
in which the velocity of air was either (a) increased or (b) decreased ar small
increments while the cylinder was oscillating at its steady-state amplitude; and, IR:
the ‘impulsive regime’ in which the velocity of air was fixed and the cylinder was
either (a) released from rest, or (b) externally excited by a shaker, at an amplitude
A’D of the order of 0.85, and then released. Furthermore, as an additional
experiment, the regime of PR(a) was repeated using a velocity step twice as large as
the original small step. Figure 23 shows a comparison of the data obtained in the
impulsive regimes with those obtained in the progressive regime as a function of V,,
= (Vi/2m) = Un2nf..D. 1t should be noted that BL (1993) have plotted their data using
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Figure 23. The steady-state vibration amplitude A/D of the
impulsive regimes as a function of V,; = (V7/2n) = V/(2nf.D) is
compared with the results of the progressive regime: %, from rest;
o, from a pre-excited amplitude; ------, progressive regime (Brika
& Laneville, 1993). The similarity of their data to those obtained
by Feng (1968) is quite striking (Brika & Laneville, 1993).

fex in defining ¥, rather than £, (the so-called undamped natural frequency).
However, the two frequencies in their in-air experiments do not differ much.

The obvious and striking features of the data shown in Fig. 23 are their similarity
to those obtained by Feng (1968). The hysteresis emphasizes once again the fact that
‘one can go a little further if one goes slower and then jumps to where one should be’
or ‘one jumps sooner, a little higher, if one goes faster, and then ends up at the same
A/D’. The phase angle (not shown here) follows the jumps in 4/D quite faithfully.
In the regime PR-a, (small increments in velocity), 4/D increases and reaches 0.53 at
Vie = 1. The next step (at V, ~ 1.01) is into an abyss that reduces 4/D to 0.38 (i.e.,
onto the data for P-b, the small decrement line) and increases ¢ by about 70°.
Subsequently, 4/D decreases to very small values at V, ~ 1.31. If the regime PR-a is
repeated with a larger step, as noted above, the amplitude data follows the PR-a
(small increment data) up to AD = 0.13 (V; = 0.87) and then jumps to 4D = 0.40 and
then continues to decrease as in the case of PR-a (small increment). Obviously, it
takes a sufficiently large velocity increment (at the right time) to force the vortices to
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change to a new configuration sooner. In the absence of a stronger impulse, a
stronger velocity, arrived at gradually, serves the same purpose. However, a closer
look at the data and the amplitude traces (not reproduced here) reveal that there are
subtle differences between the two modes. For example, in the narrow range of V, =
0.88 and ¥, = 0.95, there are two possible steady-state amplitudes for a given velocity
as far as the pre-excitation procedure (IR-b) is concerned. BL (1993) have pointed
out that for velocities larger than the synchronization onset velocity (V,, = 0.78) and
smaller than the lower critical velocity (LCV), the recording of the amplitude build-
up from rest show intriguing behavior. While the system first tends toward an
unavailable final state on an imaginary extension of the lower branch (V, <0.88), it
suddenly departs, at a point defined by a break in the envelope curve, toward a second
and available steady state of the upper branch. Such bifurcations in the envelope

curves are accompanied by an abrupt change in the phase angle and in the wake flow
regime.

BL (1993) have ascertained that the phase remains constant along the cable (a
flexible tube) within +5° and concluded that the flow mode is not affected by the
variation of the vibration amplitude along the cable and that their results should be
comparable with those obtained with uniform rigid cylinders. Figure 19, presented
earlier, shows their photographs as well as sketches of the two near-wake vortex
patterns responsible for the hysteresis loop (V,;,=0.93, Re =73 50) when the cable is
at y = -A. The upper half shows the 2P mode at A4/D = 0.40 and the lower half the
28 mode at A/D = 0.27. According to Fig. 18, V, = 5.84 (Vi = 0.93) does not
intersect the critical curve and the vortex shedding mode should be 2P for both cases.
However, the large differences in the Reynolds numbers used by WR (1988) and BL
(1993), amplitude variations along the cable used by Brika and Laneville, and the
small or large increments or decrements of velocity imposed on the ambient flow, or
the release of the cable from a pre-excited state may lead to different wake states. It
appears that 2P—2S mode jump is most sensitive to hysteresis, as intimated by BL

(1993).  This may, in part, be because the 2P mode is the most precarious, and the
28 mode is the most robust of all the known modes.

Clearly, many ways exist (some yet untried) to lead a body to excitation with
unimaginable jumps and hysteretic behavior, even without the effect of neighboring
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bodies (multiple tubes or cables). These may exhibit distinctly different excited
modal shapes and hysteresis. The foregoing confirms the fact that the dynamics of
the wake is very responsive to changes imposed on the kinematics of the flow and the

fact that (D/UZ)AU/df) must be
quantified during both the acceleration
and deceleration periods for one to
understand the effect of the rate of
change of velocity on the inception of
in both the
numerical and physical experiments.
Only then can one go beyond the
identification of the vortex positions
and types of shedding for a given

the transient states

experiment to further the state of the
art toward prediction.

BL (1993) compared their work
with the contributions of Feng (1968)
and Bishop and Hassan (1964), as
shown in Fig. 24. The similarities as
well as differences (the synchroniza-
tion and hysteresis covered by the ve-
locity range, jumps in phase) between
the three studies are probably due to
the differences in 4/D, Re, mass pa-
rameter, damping, the test bodies (ca-
ble and rigid cylinders), end condi-
tions, and the Schewe parameters.
These need not be discussed here in
further detail.

Hover et al. (1997) pioneered a
force-feedback model (FFM) for use in
a laboratory environment. FFM allows
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modeling of complex structural dynamics, while fully accounting for the fluid-
structure interaction. This is particularly significant since vortex induced vibrations
of cables and pipes alter the static configuration and induce additional static and large
dynamic loads. The force-feedback scheme can address a range of free-vibration
states, including multiple modes, travelling waves, and other nonlinearities. The use
of FFM in industrial applications requires the development of appropriate hydrody-
namic models. However, FFM’s ability to help to sort out the differences betweén
the single- and multi-mode cases and to understand the additional mechanisms that
help to organize the wake (and possibly modify the correlation length and the mode
transitions, Hover et al 2002) throws additional light on the intrinsic nature of VIV.

KW (1999) and GW (2000) experiments with elastically mounted rigid cylinders
at relatively small Reynolds numbers (increasing with ¥, from about 2,000 to
10,000). Their results are briefly summarized below.

(a) There are two distinct types of system responses, dependifxg on whether the
combined mass-damping parameter (m () is hi gh or low;

(b) At high m'¢ (e.g., 0.255), there are only two branches: an ‘Initial excitation

branch’ (or, a combined Initial-Upper branch), which yields the maximum amplitude
for the case under consideration depicted in Figs. 1 (triangles) and 2 (diamants), and a
‘Lower Branch’, encountered in earlier experiments (Feng, 1968; Brika and
Laneville, 1993; Saltara et al., 1998; Pesce and Fujarra, 2000). The 'Initial and
'Lower' branch are separated by a continuous mode transition. At low m¢ (eg,
0.013), there are three branches, as seen in Fig. 2 (black symbols): an ‘initial branch’
which no longer yields the maximum amplitude, an ‘upper branch’ which now yields

the highest amplitude (both in the region where Re < 5,000), and a ‘lower branch’
which exhibits better periodicity.

(c) It has been shown by a number of investigators (Hover et al., 1998; Brika and
Laneville, 1993; GW, 2000) that the 2S mode occurs in the initial (quasi-periodic)
and the in initial (periodic) regions. The shedding mode changes to 2P in both the
Upper and Lower branches. However, the two vortices of each pair in the Upper
branch have quite unequal strengths whereas they are of about equal strength in the
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Lower branch. Finally, the initial <> upper branch transition is hysteretic, but the
upper <> lower transition exhibits intermitting switching. The switch in the timing of
vortex shedding is coincident with the phase jump (@rora).

The maximum lift (rms) occurs at the transition between the Initial excitation and
the Upper branch. It is indeed very low in the lower branch. It is often stated that the
phase angle in the subject transition "remains at just above 0°" (KW, 1999). Clearly,
the said phase angle must be greater than zero in order for the lift coefficient to
remain finite according to our Eq. (14).

(d) GW (2000) claimed that “the range of synchronization is controlled primarily
by m (when m‘{ is constant), whereas the peak amplitudes are controlled principally
by the product of m'¢.” This claim does not refute the long-standing concerns of
Sarpkaya (1978, 1979) and Zdravkovich (1990) regarding the use of such a combined
mass-damping parameter at low-mass ratios.

(e) GW (2000) have shown, for two values of m" (1.19 and 8.63) or (m" +Ca)¢
(0.0110 and 0.0145), that the Lower-branch regimes collapse well when plotted
against fy/fo. Furthermore, the amplitude and the region of synchronization correlate
with U/Dfeom for a constant value of small m'¢ (0.014, 0.017, 0.019). These
empirical correlations need to be confirmed at much Reynolds higher numbers with
other sets of m"{ for small, intermediate, and large values of m (.

(f) Finally, as noted earlier, KW (1999) and, subsequently, GW (2000) have
introduced a frequency ratio f* =[(m"+C,)/ (m"+C,)]"? where “C, is an ‘effective’
added-mass coefficient that includes an apparent effect due to the total transverse
fluid force in phase with the body acceleration,” i.e., C, is the added mass coefficient,
as defined in this paper. In fact, f* is nothing more than the ratio of the oscillation
frequency, based on the unknown ‘prevailing’ virtual mass, to the ‘in still-water
frequency,” obtained from pluck tests, i.e., C4 = 1. Thus, contrary to their assertion,
JS* is not based on the equations of motion. Furthermore, numerical solutions of the
‘exact’ equations of motion do not need, do not depend on, and do not give rise to
such arbitrary combinations of in-still-water virtual mass (m"+C4) and the actual
virual mass (m"+C,). Nevertheless, /* has been used in the past and gives an

indication of the motion in both forced and free vibration experiments. However,
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more recent experience has shown that the use of other frequency ratios (e.g., fo/fs,
Jefoac ) are preferable and in line with those used in numerical simulations.

The use of the above frequency ratio and experiments with m” = 1.19, 2.22, and
8.63 led KW (1999) and GW (2000) to conclude that “Ca is a constant along the
lower branch” and “it has the same constant value for all other m’, and “C, = -0.54
1 0.02”. It is very important to note that they have assumed mass-damping (m'{) to
be small. They have noted that “our deduced value for C. is consistent with results
from forced oscillations by Gopalkrishnan (1993), where he finds C, ~ -0.60 in a
large region of the (4/D versus f,/f..) plane, encompassing the complete domain of
the lower branch.”  This is not quite true. In KW’s (1999) and GW’s (2000)
experiments the start of the lower branch is at Jefss = 0.87 and the end is at £, 7, =
0.54. In terms of Gopalkrishnan’s nondimensional frequency (f..D/U), the said limits
are at 0.104 and 0.160. It should be noted that the critical phase change in

Gopalkrishnan’s experiments occurs at Jefe =0.83 and not at 0.87. In any case, the
fact is that in the range of the limits of

the  Lower branch, C, in .

Gopalkrishnan’s plot (his original 5': \ '\'\\

Figure 3.16) rises from —0.3 to 0.6 as 45 '\.\.}m=o.75

Je/fs decreases from 0.83 to 0.70 and BN N

remains thereafter nearly constant at 35 A’D=°-5°“x\ N

~0.60 for 4/D < 0.6. For larger values z: T \‘\

of 4D, C,yis limited by -0.30 on either < 2E . apenzs '

side of the boundaries of the Lower 15 ,:“\‘,“

branch. The important fact is that C, 051 AID=1.03 .“:-‘

is not a constant and depends on 4/D 0 V‘;. -
and all other parameters that determine 05 [ ekt
A/D. Notwithstanding these facts, one B T S s
must note that Gopalkrishnan’s added UfeD

mass data is rather sketchy. Sarpkaya

. Fig. 25. Variation of the inertia coefficient C, (in-
(1978) presented detailed drag and

phase component of the transverse force) with V,

added mass coefficients obtained by
using forced oscillations. His C, data
are reproduced here as Fig. 25 where

= U/f.D for representative values of A/D (from
Sarpkaya 1978, V, is multiplied by 1.13 to match
the Strouhal numbers at critical transitions).
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the original U/f..D axis or V, is
multiplied by 1.13 to match the
Strouhal
transitions. Thus, it is necessary to

numbers at critical
carry out detailed experiments by
maintaining m" constant (at a rela-
tively small value) and by systemati-
cally increasing or decreasing the
damping and hence the amplitude to
investigate whether one would obtain
C. values higher or lower than —0.54.

Triantafyllou, Techet,
Yue (2003) have carried out experi-

Hover,

ments with a single rigid cylinder (1-
DOF) and a single flexible cylinder
(pinned beam, 2-DOF) at the 2-DOF-
Carriage research facility of the
Massachusetts Institute of Technol-
ogy, hereafter referred to as MIT.
The experimental conditions were as
follows: Re =3x10°, Aspect ratio =
26, m"=3.0, and ¢=0.035, and m'¢
= 0.105. The results are shown in
Fig. 26. The amplitude 4/D (1/10-th
highest average, treating the re-
sponse as a random process) of the
I-DOF rigid cylinder reaches a
maximum just a little over 1.0 at V, =
5.6 and reduces to very small values
after ¥, =11. What is perhaps most
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Fig. 26 (a) One degree of freedom rigid cylinder (Re
=30,000, /D = 26, m" = 3.0, ¢ = 0.035, and m’¢ =
0.105). The amplitude 4/D (1/10-th higheét average)
reaches a maximum just a little over 1.0 at ¥, = 5.6.
There is no upper branch, but only a smooth increase in

"A/D ; (b) a ﬂexible cylinder (a pinned beam with 2-

DOF) exhibits essentially the same overall behavior.
However, the position of the maximum 4/D is shifted to
larger ¥, (about 7) and to larger 4/D (about 1.5); (c) the
maximums of the in-line and transverse motion trajec-
tories do not occur simultaneously, the former precedes
the latter, see also the forces in 26(b). (Triantafyllou,
Techet, Hover, and Yue, 2003).

important is the absence, rather than the presence, of some observations made at
lower Reynolds numbers with low m’g: a hysteretic jump from the Initial excitation
branch to the Upper branch (as in Fig. 2). In fact, the variation of 4/D, in Fig. 26(a),
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from its inception to its maximum proceeds rather smoothly. This may be either due
to the fact that in Triantafyllou, et al’s (2003) experi ments m’g (= 0.105) is not small
enough or the Reynolds number in GW’s (2000) experiments is not high enough for
the Gerrard-Bloor transition waves in the free shear layers to disappear and the shear
layer transition to reach its maximum upstream temporal mean position. In other
words, the initial branches observed at low m’"G and at low Re may be a consequence
of incomplete transition in the shear layers or, in other words, a low-Reynolds
number effect. Experiments are needed with m’G < 0.01 where the minimum Re at V,
= 3 is larger than about 15,000 to resolve the existence or absence of various regimes
in the A/D versus V, plot at industrially significant Reynolds numbers.

Figure 26(b), for the flexible cylinder (a pinned beam with 2-DOF) shows
essentially the same overall behavior as that for the rigid cylinder as far as the
absence of various ‘branches’ are concerned. However, the position of the maximum
A/D is shifted to larger ¥V, (about 7) and to larger A/D (about 1.5). This is in
conformity with the data shown in Fi g. 15 (our two-degrees of freedom experiments).
Figure 26 reinforces the fact that the results obtained at relatively small Reynolds
numbers (say, less than about 6,000) should not generalized to Reynolds numbers
larger than about 15x10° to 20x10°. Figure 26(c) shows the motion trajectories of the
flexible cylinder. It is evident from the in-line force coefficient as well from Fig.
26(c) that the largest excursions in the drag direction occur at V, ~ 55,notatV, ~7
where the maximum amplitudes occur in the transverse direction. Clearly, the
maximums of the in-line and transverse oscillations do not occur simultaneously, as
seen in Figs. 26(b) and (c), the former precedes the latter. Also the larger in-line

amplitudes in the range of 4 < ¥, < 6 suggest improved and sustained correlation
conducive to in-line forces.

12. VIV at high Re: facts, extrapolations, and conjectures

In the foregoing, we have presented mostly experimental facts in the range of
Reynolds numbers from about 500 to 6x10°. These were obtained through small and
medium-scale laboratory experiments under controlled conditions. Many relevant

patainelers such as the correlation length, pressure distribution, separation points, etc.
were not measured and/or reported.
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Experiments with forced and self-excited cylinders in non-sheared flows have
shown that the amplitude ratio A/D, the phase angle ¢, and the in-phase and out-of-
phase components of the lift force depend (mostly) on the reduced velocity V; or its
various versions. These parameters are needed for the iterative design of relatively
simple cables or pipes subjected to uniform flows.

However, the ocean environment is considerably more complex: lack of data,
sufficient insight, and practical experience on the occurrence of VIV at critical to
super-critical Reynolds numbers in omni-directional waves and currents, uniform
and/or non-uniform shear, stratification, ambient turbulence, with various types of
excrescencies and possible multi-modal response of structures, force the designers to
continue to use relatively high safety factors. The matter is further complicated by
the fact that data obtained either in the large basins around the world or in the oceans
by the industry are often case-specific and proprietary. The wide dissemination of the
existing ocean data would have helped to resolve many of the issues cited above for
the betterment of all concerned. We do not hope to change the existing operational
culture of the industrial organizations, however, we are grateful to a few who shared

some information with us during the past year so that we could glean some facts from
them.

As we have noted previously, in connection with the discussion of the “Govemning
and influencing parameters,” Humphries and Walker (1988, hereafter referred to as
HW) carried out extensive experiments with a cylinder (D =0.168 m, L/D =33, with
‘smooth external finish', m" = 1.98, { =0.0143, m"¢ = 0.0283, and f,p= 1.23 Hz)ina
deep flume in the range of Reynolds numbers from about 50,000 to 4x10° in both the
nominally uniform flow, (Una/Uminy= 1:1, and in linear (positive) shear with 1:1.5,
1:2, and 1:3, with the corresponding shear parameters of 0.0, 0.012. 0.02, and 0.03,
respectively. The cylinder was effectively a “pinned-pinned” beam. As they have
noted, “The top end of the ‘pin’ mounting was connected to a hydraulic ram to allow
vertical movements as the vertical cylinder flexed. This prevented the introduction of
axial tension, and hence changes in natural frequency, due to the model deflection.”

The results of (HW, 1988) are shown in Figs. 27 and 28 for the global drag
coefficient and the cross-flow amplitude response, respectively.  Figure 27 shows

that the drag coefficient for the uniform flow (Una/Umir= 1:1) is dramatically
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Fig. 27. (a) The nature of the variation of C, is like that
of a smooth cylinder entering the critical transition, with
Cy dropping sharply. The VIV (with 2-DOF) first arrests
the drop in C, and then increases it sharply, proving that
VIV occurred within the zone of critical transition. The
drag for the uniform flow (Upa/Unir= 1:1) is dramatically
amplified with respect to the rigid cylinder (at rest). Asto
the effects of shear, the maximums of C,decrease with
increasing shear and occur at smaller U reffunD
(Humphries and Walker, 1988).
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amplified with respect to the
rigid cylinder (at rest) and that
VIV in uniform flow produces
the largest drag (after an initial
anticipated sharp drop) in the
critical regime.

The nature of the
variation of C; is very much like
that of a cylinder entering the
with C,;
However,
when the lock-in occurs (with 2-
DOF) C,; sharply,
proving that VIV occurred within
the zone of critical transition.

critical  transition,

dropping  sharply.

increases

Furthermore, even in the critical
Re region, the occurrence of
maximum Cy (at about U,./f,,,,D

Fig. 28. The maximum A/D for the no-shear
case (about 1.5 at V,./,,D = 6.2) corre-
sponds quite well with that in Fig. 26 (about
L5 at Upffi,nD = 7). With shear, the maxi-
mums of 4/D occur with reduced peaks at
smaller U, /f,,D and decrease towards
unity. It appears that shear extends the
range of the lock-in region. Even in the
critical Re region, the occurrence of maxi-
mum Cy (at about U,./%,,,D = 5.6) precedes
the occurrence of maximum A/D (at
UreffurD = 6.2), as in Figs. 26(a) and (b) for
the sub-critical flow (Humphries and
Walker, 1988).




~ 5.6) in Fig. 27 precedes the occurrence of maximum A/D (at Uref/furrD ~6.2) in Fig.
28, as in the case shown in Figs. 26(a) and (b), for a sub-critical flow. Furthermore.
the maximum A/D for the no-shear data (about 1.5 at U,oforD = 6.2) corresponds
quite well with that in Fig. 26-b (about 1.5 at U,./f.:D = 7). As to the effect of shear,
the data under consideration clearly show that C, decreases with increasing shear and
the lock-in occurs with smaller peaks at smaller U,.¢/f,wD. Likewise, A/D maximums
decrease toward unity. It is further noted that shear extends the range of the lock-in
region. However, these observations and the results shown in Figs. 27 and 28 are of a
global nature only since they are based on the reference velocity at mid-span. With
higher shear, the character of the flow (super-critical flow, high intensity turbulence)
at the top of the pipe may be significantly different from that at the bottom
(subcritical flow, lower turbulence), and there is no simple way to average out or to
explain the difficult-to-quantify occurrences and transitions along the pipe. In spite

of all these, shear should not necessarily instill a ‘fear of the unknown’ in most
designs.

A method for predicting approximately the static and lift responses of a flexible
cylinder in a unidirectional sheared current was outlined by Patrikalakis and
Chryssostomidis (1986). Their approach, based on the experimental data obtained by
Sarpkaya (1978), represents the multifrequency lift response of a flexible cylinder in
a sheared current by predicting a number of independently determined,
monochromatic, multimode dynamic solutions. A numerical example assuming

bimodal solutions is included to illustrate the method for the geometry of a single-
tube marine riser.

A numerical simulation tool was developed by Dalheim (1999) at Det Norske
Veritas for the prediction of VIV of flexible risers in sheared currents with some
promising results. The studies of large-scale model testing of deep sea risers (90 m
long) in a shear current (Huse et al. 1998) have produced a number of important
results: (a) vortex induced vibrations may cause resonant axial vibrations in a deep-
sea steel riser whether it is pinned at both ends or free at one end and pinned at the
other; (b) such axial vibrations may lead to excessive stresses in the risers,
significantly larger that the bending fatigue stresses normally considered to be the
main problem of VIV; and (c) reducing or eliminating the lateral as well as the axial




excitation by employing the most suitable VIV suppression devices goes a long way
toward reducing the high axial stresses.

It is evident from the foregoing that the end conditions of the test pipe, that is, the
freedom allowed to the ends to move cyclically in the axial direction, emerges as an
important parameter, particularly in the field tests. If both ends of a pipe (say,
pinned-pinned) are constrained to extensional motion, the A/D will be smaller than if
one or both ends were free to move in the axial direction, as in the case of tests by
Humphries and Walker (1988). In a long pipeline, every span is elastically connected
to each other. This serves as a strong damper and increases the stiffness of the line,
which, in turn, reduces the amplitude of VIV. The amount of reduction in A/D is not,
however, easy to quantify because of its dependence on several other parameters
(e.8., m’, {, Lypan/D, stiffness, shearing strains, temperature and its gradients, friction,
time-dependent roughness, etc.). Itis also clear from the foregoing, as well as from

other sources, that high-Re data are not significantly different from those seen at sub-
critical Reynolds numbers above 20,000.

Bruschi, Buresti, Castoldi, and Migliavacca (1982) described two experimental
investigations at high Reynolds numbers. The first was conducted in a wind tunnel
with a model cylinder to quantify the wall-proximity effects. The second was carried
out with a full-scale pipeline span (with various types of roughness) immersed in a
tidal current (1.7 < Re < 2.2x10%). Bruschi et al. (1982) have not presented any
graphical or numerical results but made the following observations: (a) the
oscillations at the center of the span reached 0.8D at Re = 1.7x10° for a pipe of D =
0.15m, and 4 =2 D at Re = 2 4x10° for a pipe of D = 0.51 m; and (b) the flow at the
lower Re was in the critical transition region and at the upper Re was in the

supercritical region. They have conducted engineering tests with helical ropes and
other ‘damping’ devices.

Allen and Henning (1997) performed experiments with two flexible as well as
non-flexible circular cylinders in the critical/supercritical Reynolds number range (D,
~0.088 m, &/D; = 1.37x10™, in the Re range of 2x10° < Re < 6x10°; and D, = 0.14 m,
KD; = 9.94x107, in the Re range of 6x10° < Re<1.5x10°). Varying degrees of
difficulties were encountered with the end conditions, alignments, Froude numbers
exceeding unity (in the test basin) and the duration of the data-acquisition period.




Their stationary non-flexible-cylinder experiments tended to agree with the well-
known results of Roshko (1961), Schewe (1983), and Shih et al. (1992) at similar k/D
values. The results have once again illustrated the fact that the case of a smooth
cylinder is a pathological case and the lightly roughened cylinder becomes the
canonical bluff body, particularly at supercritical Reynolds numbers, for both
stationary and vibrating cylinders.

For the smaller cylinder undergoing VIV, the drag coefficient decreased from
about 1.2 to 0.6, the in-line RMS displacement remained nearly constant at about 4/D
= 0.1, and the amplitude of the transverse oscillations leveled off at 4/D = 0.4 for Re
larger than about 3.2x10°. For the larger cylinder undergoing VIV, the drag
coefficient increased from 0.45 (at Re = 7x10°) to a maximum of 0.7 (at Re =
1.3x10% and then decreased to about 0.6 at Re = 1.5x10%. The in-line RMS
displacement remained nearly constant at about 4/D = 0.05, except at a single point
(Re = 1.05x10° at which it jumped to about 0.13. It was not clear whether this
singular event was a Reynolds number effect or, more likely, the effect of the Froude
number exceeding unity. The RMS amplitude of the transverse oscillations increased
almost linearly from zero (at Re = 7x10%) to 4/D = 0.44 (at Re = 1.3x1.3x10°) and

then decreased linearly to about 0.3 at the highest Reynolds number encountered (Re
= 1.5x10°).

Our numerous conversations with enlightened representatives of several large
petroleum concemns have helped us to deduce the following tentative conclusions,

which will be presented here without empirical verification proof (i.e., caveat
emptor!):

1. It is a well-known fact that as the Reynolds number increases from about
400,000 to about one million, the Strouhal number is undefinable for a steady flow
past a 'smooth’ cylinder. However, for a cylinder subjected to VIV, the Strouhal
number becomes definable in the said Re range and smoothly transitions from about
0.18 to 0.24, due to the enhanced correlation. The wake width decreases from about
D10 0.7 D, and the drag coefficient decreases accordingly.

2. The limited data show that the case of a "smooth" cylinder is a pathological
case and the lightly roughened cylinder becomes the canonical bluff body at high
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Reynolds numbers (see, e.g., Achenbach, 1971; Schewe, 1983; Shih et al 1992;
Okajima et al. 1999). Cylinders of relatively small roughness exhibit relatively small
A/D in the usual range of reduced velocities. However, with a roughness of about 1-
mm (for instance, over a cylinder of one foot in diameter), one may expect a
maximum A/D ratio of about 0.95. The same cylinder subjected to forced
oscillations yields results very similar to those obtained with self-excited oscillations.
The foregoing results are mostly for cylinders constrained in the in-line direction.

3. Experiments with 2-DOF (both in-line and transverse oscillations) at very high
Reynolds numbers show that the results are indeed nearly identical to those reported
by Sarpkaya (1995), (see Fig. 15), as we have noted earlier. The 2-DOF case
produced 10 to 20 percent larger A/D values reaching about 4/D = 1 over a wider
range of reduced velocities (from about 4 to 13). The maximum A4/D values occur in
the range of reduced velocities from 8 to 10. In the case of the constrained or 1-DOF
cylinders, the maximum A/D is somewhat smaller (about 0.85) in the range of

reduced velocities from about 5 to 6, as would be expected. These results require
further confirmation, hopefully, in the very near future.

4. The effect of shear is more difficult to account for in terms of various
transitions and axial variations in the flow states. However, the experiments of
Humphries and Walker (1988) provide strong guidance for design. Currently, strip
theory, based on forced cylinder data and correlation models, is used in spite of its

obvious shortcomings (e.g., phase and amplitude differences between the segments,
directional changes in velocity and/or shear).

5. None of the high Reynolds number experiments (Re > 20,000) show such
phenomena as "initial branch" (seen only at Reynolds numbers less than about
5,000). The vortex modes of 2P, 28, and others have been mapped only at Reynolds
numbers below 1,000. As we have noted earlier a number of times, the shear layers
do not become unstable for Re < 1,300 and the mean position of the line of transition

to turbulence does not reach upstream enough for Re less than about 15x10° to
20x10°,

6. In frce oscillativus at sufficiently large Re, the oscillations are not sinusoidal,
as evidenced by many experiments and numerical simulations. Consequently, the
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flow does not become fully established, say "periodic," because the amplitude, added-
mass, frequency, phase angle, vortex structures, shear layers never become fully
established. Each cycle is affected by the character of the previous cycle.
Consequently, the ever-changing topology of the flow prevents it from exhibiting
sharp changes (as branches) in the 4/D versus V, plots at high Re.

7. It may be stated with little reservation that high-Re data (4/D and force-
transfer coefficients, such as lift and added-mass) with smooth and reasonably-
roughened, non-tapered cylinders exhibit essentially the same results as those the
research community has produced in the laboratories during the past 15 years in the
range of Reynolds numbers from about 20,000 to 60,000 (except, as noted above,
with regard to the smooth transition in Strouhal numbers and drag coefficients in the
critical to supercritical regimes). Thus the issue is not the discovery of great
surprises at high Re, but rather how to refine the high Re data to reduce the error to
less than 10%, how to deal better with shear, how to quantify and to translate the
effects of the end conditions (axial motion) for single-span laboratory experiments
versus continuous pipes, how to account for and quantify multi-modes and mode
interference, how to suppress VIV at any Re, and how to reduce the safety factors.

8. In recent years, more and more investigators have turned towards research in
the thinner and thinner stream of discoverable knowledge. This created a wide gap
between the solution of far more complex industrially significant VIV problems and
the data obtained at photographable Reynolds numbers. The extensive application of
VIV to PIV has resulted in large volumes of colorized vortices, often with intangible
returns at critical and transitional Reynolds numbers.

9. The wide dissemination of the large-scale data will improve their interpretation
and the planning of future experiments. It will also enrich the science and technology

of VIV and help to resolve many of the issues cited above for the betterment of all
concerned.

13. Numerical simulations

The numerical simulation of flow past a circular cylinder undergoing VIV at
relatively small Reynolds numbers (particularly in the range Re =100-1000) is

87




complicated by some of the most complex problems of fluid mechanics such as
separation excursions, incomplete transition in the shear layers, and the coherence
length based on a yet unexplained coupling mechanism between the dynamics of the
near-wake and that of the structure. Most of the disparity between the experiments
and numerical simulations is attributable to the fact the mean position of the line of
transition to turbulence does not reach upstream enough for Re less than about 15,000

to 20,000, even though VIV with two-degrees of freedom may precipitate the
instability somewhat sooner.

Many models of turbulence, for every occasion, are described in numerous texts.
However, DNS does not require ‘modeling.’ It deals only and purely with the
numerical problem of solving the time-dependent Navier-Stokes equations, albeit at
relatively small Reynolds numbers. Large Eddy Simulation (LES) appeared to be a
compromise. However, as Grinstein and Karniadakis (2002) noted recently: “After
more than 30 years of intense research on large-eddy simulations (LES) of turbulent
flows based on eddy-viscosity subfilter models, (Deardroff, 19;/0), there is now
consensus that such an approach is subject to fundamental limitations. It has been
demonstrated for a number of different flows that the shear stress and strain tensors
involved in subfilter eddy-viscosity models have different topological features
rendering scalar eddy-viscosity models inaccurate.”

Other computational methods include the discrete-vortex method (DVM), the use
of RANS, or the combination of a number of them. We will not dwell on simulations
at Reynolds numbers smaller than 1,000. They may be of interest in assessing a

given numerical scheme at a given Re, but not necessarily to predict VIV at more
realistic Reynolds numbers,

The discrete vortex model was first used by Sarpkaya and Shoaff (1979) with
reasonable success after judicious selection of the controlling parameters (Sarpkaya,
1989, 1994). Meneghini et al. (2002) used DVM to calculate the behavior of cylinders
(m" =3.3, m‘{ = 0.013, and L/D = 94.5, 480, 4,600) subjected to currents and shear
(Re = 10,000). Their simulation did not capture the ‘Upper branch,’ related to the
maximum amplitudes. The case of a cantilever yielded similar results. Their single
riser simulations provided the expected vibration modes and the comparisons with the
quasi-steady analysis were quite encouraging.




Fig. 29. A 2-D finite volume analysis in con-
» fomrest junction with RANS equations and a K-o

~——a— LNCTESSINg Velocity .
~ —o~ - decreasing velocity model for turbulence to simulate the 1-DOF
) response of a cylinder in the range of Re from

07 900 to 15,000 with m* = 2.4 and m*{= 0.013.
08 Three initial conditions were used: cylinder

starting from a state of rest, increasing veloc-
04 ity, and decreasing velocity. For the condi-

tions of ‘from the rest’ and ‘decreasing veloc-
ity’ only the lower branch was predicted.
With ‘increasing’ velocity, on the other hand,
the maximum amplitude corresponded to the
experimental value, but the upper branch did
0 2 4 8 & 10 12 34 6 18 not match the experiments. (Guilminaeu and

UffuD Queutey, 2001).

Evangelinos and Karniadakis (1999) and, subsequently, Evangelinos et al. (2000);
Lucor and Karniadakis (2002), and the references cited therein, dealt with the
predictability and uncertainty in flow-structure interactions and with the dynamics of
flow structures in the wake of rigid and flexible cylinders subjected to VIV.
Recently, Lucor at al. (2003) extended their DNS model to Re = 3000 (by increasing
the lateral spacing of the mesh size), but not without some difficulties. Guilmineau
and Queutey (2001) used a 2-D finite volume analysis in conjunction with RANS and
a K-@ model for turbulence to simulate the 1-DOF response of a cylinder in the
range of Re from 900 to 15x10° and compared their predictions with those of KW
(1999) at Re ~ 3700. Three initial conditions were used in the simulations: a cylinder
starting from a state of rest, increasing velocity, and decreasing velocity. For the
conditions of ‘from the rest’ and ‘decreasing velocity’ they have predicted only the
lower branch. With ‘increasing’ velocity, on the other hand, the maximum amplitude
corresponded to the experimental value, but the upper branch did not match the
experiments (Fig. 29). The use of a fully developed turbulence model, (K- ) for a 2-
D finite volume analysis, in the range of transitional Reynolds numbers (for the shear
layers) makes it difficult to discern the reasons for the differences between the
experiments and their numerical simulations.

Notwithstanding the concerns expressed by Grinstein and Karniadakis (2002),
LES has been used by a number of investigators. Saltara et al. (1998) used DVM and
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LES for a 1-DOF VIV at Re = 1000. Tutar and Holdo (2000) used LES in
conjunction with the finite element method at Re=2.4x10* for a cylinder subjected to
forced oscillations and found that 3-D representation was necessary to obtain accurate
enough results. This follows from the fact that 2-D representations naturally yield
perfect correlations. The VIV enhances the correlation but it does not make it perfect.

As we have noted earlier, the degree of correlation, related to all other parameters,
plays a major role in all aspects of VIV. As noted by Al-Jamal and Dalton (2002),
“An LES model, either 2-D or 3-D, is not capable of calculating the full flow past a
stationary cylinder, much less an oscillating one.” DNS is Re-limited for the
foreseeable future. Thus, all one can hope for is the prediction of some aspects of
VIV through the use of RANS and suitable turbulence models under the safeguiding

as well as safeguarding eyes of high-quality experiments in all ranges of Reynolds
number.

Zhang and Dalton ( 1996) performed a 2-D LES study for a transversely
oscillating cylinder at Re=13,000. Their results exhibited the same trends as the
experimental results of Feng (1968). Lu and Dalton (1996) examined the VIV
problem for a 2-D viscous flow at Re = 200 and 2-D turbulent flow at Re = 855.
They found good agreement with the results of Ongoren and Rockwell (1988a, b) and
reasonably good agreement with the results of Lecointe and Piquet (1989).
However, the lift calculations of Lecointe and Piquet were about 35% larger at Re =
855 than those of Zhang and Dalton because they had not used a turbulence model.
More recently, Al-Jamal and Dalton (2002) have performed 2-D LES calculations of
the self-excited response of a cylinder at Re = 8 000 for a range of damping ratios and
natural frequencies. In spite of the shortcomings of a 2-D simplification, their results
predicted the expected vibratory response in the range 0.72 < f.n/fq < 1.26.
Decreasing material damping increased the lock-in range. A beating behavior was
observed in the oscillations, which decreased with increasing damping (see Fig. 9).
Clearly, one does not expect the 2-D LES to represent the inception and growth of the
instabilities accurately, let alone the transition to turbulence, in unsteady shear layers.
It appears that the question of the 3-D numerical simulation of VIV even for a smooth
circular cylinder in the range of Reynolds numhers fram a few thnueand to over a
million will remain unresolved indefinitely. Higher order modes caused by secondary




instabilities resulting from the changes in phase and amplitude in self-excited
oscillations will certainly complicate the simulations with any turbulence model in
any indirect numerical simulation. However, large-scale benchmark experiments at
large Reynolds numbers coupled with 3-D numerical simulations using RANS, or the
Favre-averaged (1965) Navier-Stokes equations (FAN S), employing several
turbulence models, may allow one to develop industrial codes that may be used (after

many calibrations) for design purposes in small domains of the controlling
parameters.

14. Conclusions and recommendations

The modest objective of this paper has been to review the vortex-induced
vibrations in a few specific fundamental cases, as we did in 1979. However, the
difficulty of this review has been materially increased by the enormous growth of the
size and number of conferences and publications during the past 25 years. Those who
desire a more comprehensive or utilitarian treatment of VIV will find the references
cited in the text and hundreds of other papers which appeared in the proceedings of
numerous conferences, to be most helpful. Obviously, much remains to be done, and
we will record here only a few cautious suggestions for consideration, rather than a
competent glance into the future:

1. Carry out intricate experiments in the range of Re from about 3,000 to 50,000
on the evolution of instability on unsteady shear layers emanating from a rigid
cylinder undergoing synchronized (free/forced) oscillations.

As noted in the ‘Introduction,” Reynolds number in our on-going experiments is
kept constant at a specified value by maintaining U, D, L/D, k, {, pr and v constant
and varying only m in p,, = 4m/(zLD?) in small increments and hence JoaciIn V, =
UlfuacD or in f/f,ec. Subsequently, Re is changed to a new value for a new set of
experiments with varying m. The data will define a 3-D space showing A/D versus
Jex/foacin each plane of constant Re. We intend to continue this study with further data
inter-comparisons and hope that the results will complement other contributions
dealing directly with the evolution of instability on unsteady shear layers and with the
DNS, LES, or RANS simulations of VIV at a given Re.
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2. Obtain a new set of data (at Re > 2x10*) for all values of S (for rigid cylinders
and cables with proper end conditions) using refined methods, instrumentation, and
proper damping (in air) partly for practical purposes and partly, and most importantly,
for determining the regions and the reasons where S; alone correlates the data and the
regions where m” and ¢ operate as independent parameters. This will help to separate
the regions of applicability of the simple linear-motion analysis of VIV, from which
the S emanates, from the non-linear range of the system response.

3. Determine the character and magnitude of the self-limiting behavior of VIV of
the cylinders and cables at large Re and L/D as S; approaches zero.

4. Perform a whole new set of careful experiments at Re > 20,000 in a facility
without free surface or surfactants (dissolvable or non-dissolvable) to delineate the
vortex shedding modes as a function of Jex/fst in the entire range of synchronization.
It has already been emphasized a number of times that the Reynolds number effects in

all VIV experiments and numerical simulations remain an unresolved practical as
well as fundamental problem of major significance.

5. Perform a numerical simulation of the motion of two parallel shear layers
subjected to sinusoidal transverse motion in a uniform steady flow (a la Abernathy
and Kronauer, 1962). Even though one may not be able to connect all the links of the

chain, the parts that can be connected might provide a better understanding of vortex
shedding modes.

6. Systematically investigate (at Re > 20,000) the role of the amplitude
modulations in free oscillations on the differences between the free and forced
oscillations. The rate of increase or decrease of the ambient velocity and the

intensity and integral length scale of turbulence must be quantified for each
experiment.

7. Find the means (numerically or experimentally) to interfere with the coupling

mechanisms between the near-wake dynamics and the structure dynamics to change
the phase difference.




8. Control mode: all active and passive means to prevent the wake from shifting
to a 2S mode.

9. Introduce additional frequencies into the motion of a flexible body (cable) to
cancel some others and diffuse the energy between various frequencies.

10. Produce cables and structures with smart materials (see, e.g., Chopra, 2002 and
the references cited therein) that increase their (material) damping when subjected to
cyclic motion, stiffen their supports, and reduce the correlation length (interfering
with the boundary layers and shear layers).

11. Carry out extensive measurements and numerical simulations to enhance the
understanding of the effects of body proximity, vortex shedding from, and VIV of
three-dimensional bodies.

12. Perform extensive measurements and numerical simulations to enhance the
understanding and prediction of the effect of ambient turbulence on shear layer
instability, separation excursions, and VIV.

13. Find more elegant means to suppress VIV and to control (decrease) the
correlation length throughout the cycle (ropes are so non-ingenious).

14. Determine the mutual interaction of low frequency ocean waves, uniform (or
sheared) collinear currents and VIV at Re > 20,000 (‘young’ turbulence at Re = 1,000
is commendable, but not enough).

15. Make great strides to enhance the power of computers, numerical methods, and
approximate models (the existing as well as new ones) to enhance the prediction of
VIV. There are, at present, large Re gaps between the computable, measurable, and
industrially-significant ranges of VIV. Evangelinos et al. (2000) noted that the DNS
simulations “are currently prohibitively expensive to be used in the engineering
design of VIV.” They have also suggested that “the answer could be provided by
dynamical systems modeling, given the low dimensionality of the wake” Clearly,

the subject will remain exciting for generations to come not only because turbulence
remains ununderstood but also because it needs simulations at a level that could be

used for industrial design explorations and ingenious VIV suppression devices at any
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Re, in any environment. As noted earlier, a better way may be developing robust
codes based on various versions of RANS or FANS, suitable turbulence models, and
benchmark experiments at large Reynolds numbers, and establishing code banks for
validation and verification. The results of low-Re VIV experiments (e.g., at Re less

than about 6,000) should not be generalized to Reynolds numbers larger than about
15x10” to 20x10°,
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